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Abstract
Introduction and Objective. Currently, air pollution remains a significant factor affecting health. The aim of the study is 
to explore the spatial distribution characteristics of air pollutants in Gansu Province, China, as well as the direct effects and 
spatial spill-over effects of air pollutants on mortality rates in various regions of the province. �  
Materials and Method. Panel data was collected from 2015–2022 (excluding 2020) and employed a panel spatial 
autoregressive model with fixed effects for both time and space, using three types of spatial weight matrices to explore 
the spatial impacts of air pollution on mortality rates among residents. �  
Results. It was found that the mortality rate and degree of air pollution across various areas of Gansu were not randomly 
distributed, but showed obvious correlations and spatial aggregation characteristics. The median air quality index value 
significantly influenced the mortality rate of residents, and air pollution showed a spatial spill-over effect on the mortality 
rate. Mortality rates of the permanent population in a specific area were influenced not only by local air pollution but also 
by air pollution in neighbouring or economically-related areas. Numerical values of the direct and spatial spill-over effect 
of air pollution were calculated. �  
Conclusions. It was concluded that air pollution significantly impacts the mortality rate among Gansu’s permanent residents 
through spatial spill-over effects. Collaborative efforts by governments across different regions are essential to mitigate 
the detrimental health effects of air pollution.
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INTRODUCTION

China’s economy has sustained ongoing growth, leading to 
enhancements in urban healthcare and elevating the living 
standards of its residents. However, this development has 
brought about the issue of environmental air pollution. 
Research indicates that, among secondary risk factors, air 
pollution is the fourth leading cause of death globally for 
both men and women [1]. China is a major industrial country, 
but the advancement of industry has brought with it the 
issue of air pollution, which markedly impacts the health of 
the local residents [2]. According to the Air Quality Index 
(AQI) standardsa of China, the domestic AQI is used as 
a metric to assess the degree of air pollution in a specific 
region. The AQI is a dimensionless scale that provides an 
overview of levels of air qualityb; it reflects worsening air 
quality conditions and escalating risks to human health. 
The main pollutants evaluated using the AQI are particulate 
matter (PM10), inhalable particles (PM2.5), sulfur dioxide, 

nitrogen dioxide, ozone (O3), and carbon monoxide. Taking 
the air quality of 14 regions in Gansu during 2022 as an 
example, 10 regions had an AQI above 100 for more than 
30 days within a year, with the most severe region having 
an AQI above 100 for 77 days. It is therefore evident that air 
pollution in some areas of Gansu is still very serious, and 
studying the impact of air pollution on mortality in Gansu 
holds significant practical relevance.

Studies submitted to Biomedical Journals indicate that 
air pollutants can trigger a variety of health conditions, 
including respiratory diseases [3], cardiovascular [4] and 
cardiopulmonary diseases [5], brain damage [6], lung cancer 
[6], and mental disorders [5]. These pollutants can also 
disrupt the immune system [7] and are closely associated with 
increased mortality rates [8]. Although research has directly 
or indirectly proven the impact of air pollutants on health, 
due to differences in baseline and data characteristics, results 
regarding the impact of different pollutants on health are not 
consistent. In addition, due to varying development stages 
across different areas of Gansu, the degree of air pollution 
also varies considerably across various areas. For example, 
in 2022, Wuwei City had an AQI greater than 100 for 77 
days, whereas Longnan City had only 6 days with an AQI 
greater than 100. Significantly, as some air pollutants exhibit 
spatial spillover effects [9], it is essential to consider both 
spatial correlation and spatial lag effects when analyzing the 
influence of air pollution on mortality rates.

Current research mainly considers the effects of exposure 
to the main pollutant (PM2.5) on health and the health 
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a. National Environmental Protection Standards of the People’s 
Republic of China (Technical Regulation on Ambient Air Quality 
Index [on trial]).

b. AQI is divided into six levels: 0–50: excellent, 51–100: good, 
101–150: mild pollution, 151–200: moderate pollution, 201–300: high 
pollution, and greater than 300: severe pollution.
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burden [10], but ignores the fact that when PM2.5 is not the 
main pollutant – other air pollutants also have a substantial 
impact on health. Taking Lanzhou, the capital of Gansu, 
as an example, in 2022, Lanzhou had 67 days with an AQI 
greater than 100, of which 11 days were primarily owing to 
PM2.5, and 33 days were primarily owing to O3. Therefore, 
the impact of air pollutants other than PM2.5 on human 
health in the Gansu region cannot be ignored.

OBJECTIVE

The aim of the current study was to thoroughly assess the 
overall effects of air pollutants by employing the median 
AQI values in order to examine their influence on mortality 
rates of the population. Also taken into consideration were 
population density, the number of elderly people, hospital 
resources, per capita gross domestic product (GDP), and 
industrial structure, to control the impact of extraneous 
confounding variables on the mortality rate. Panel data were 
utilized spanning 2015 – 2022 (2020 excluded) from 14 cities 
in Gansu to investigate both the direct and spatial spillover 
impacts of air pollutants on mortality rates, and to calculate 
the effect values. The results obtained will provide a reference 
for local governments to formulate pollution control plans.

MATERIALS AND METHOD

Study area and data. Gansu, situated in China’s western 
region, has an average altitude of 2,158  m and a dry and 

arid climate with little rainfall. The presence of deserts 
within the province and in the adjacent regions of Xinjiang, 
Qinghai, Ningxia, Inner Mongolia and Shaanxi, has resulted 
in severe particulate matter pollution in Gansu. In addition, 
the presence of factories and mining areas within and around 
Gansu, coupled with a heavy traffic burden within the 
province, has resulted in Gansu facing increased levels of 
pollutants such as SO2 and O3. The main pollutants in Gansu 
Province are not solely particulate matter, multiple pollutants 
also need to be considered when studying air pollution in 
the region. Gansu Province, which is severely affected by air 
pollution, was therefore selected for study using the AQI to 
measure the comprehensive impact of air pollutants.

The study examines the spatial impact of air pollution on 
mortality rates by selecting 14 regions within Gansu, China, 
for analysis covering the period from 2015–2022. Owing to 
the main data for 2020 not being published, that year was 
excluded from the study. The 14 regions comprise all the 
municipal administrative units in Gansu Province. The AQI 
data (China National Environment) and the area data [12] 
for each region used in this study were sourced from archival 
records. Additional indicators, including population data, 
number of hospitals, and GDP data, were also collected from 
the Gansu Development Yearbook [13].

Statistical analysis. Numerous studies currently explore 
the effects of air pollutants on health, measuring the health 
burden using various dependent variables, with most using 
the number of outpatient visits or number of hospitalizations 
[14]. In addition, to avoid the biased results caused by the 
above-mentioned variables [15], some studies have used 

Figure 1. Location of Gansu
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outpatient costs, the number of outpatient visits, and the 
number of hospitalizations as measurement standards for the 
health burden [16]. Furthermore, research has confirmed that 
air pollution affects mortality [8]. This study used mortality as 
the dependent variable to examine the impact of air pollution 
on residents’ mortality. The AQI is reported by taking the 
highest value [17] derived from multiple pollutants. To avoid 
ignoring the impact of other air pollutants on health when 
PM2.5 is not the main pollutant, as well as the impact of high 
values in special situations on the accuracy of the research, 
this study employs the median AQI value within a year 
(AQI_med) to represent the air pollution level in a particular 
region within 1 year. According to the actual situation, many 
factors affect residents’ health, with air pollution being just 
one of these factors.

Referring to existing research [10, 16, 18], in this study, the 
following control variables were used: population density 
(year-end density of the permanent population, measured 
in individuals/km²), per capita hospital resource quantity 
(year-end ratio of hospitals to the permanent population, 
measured in units/10,000 people), per capita GDP (pgdp, per 
capita GDP, measured in 10,000 RMB/person), and industrial 
structure (ratio of the GDP from secondary industry to that 
of tertiary industry).

Research additionally shows that some common respiratory 
diseases have a considerable impact on human life, and 
the mortality rate among elderly people is relatively high 
[19]. A large elderly population will lead to the inclusion 
of natural deaths in the total number of deaths; therefore, 
in this study, additionally selected was the percentage of 
residents aged over 65 within the total population of the 
region (year-end ratio of the population aged 65 years and 
above to the permanent population, measured in percentage 
[%]) as a control variable. Research shows that for some 
diseases, inhalable particulate matter (PM2.5) is the main 
influencing factor [4]. Thus, in the current study, the median 
value of PM2.5 within 1 year (PM2.5_med) and the median 
value of PM10 within 1 year (PM10_med) were selected as 
replacement independent variables in the robustness test.

Spatial autocorrelation test. To thoroughly investigate the 
spatial spillover effects of atmospheric pollutants on mortality 
rates, the study employed both global and local indices of 
spatial correlation during the exploratory analysis phase. 
These indices were assessed using Moran’s index (Moran’s I), 
which is employed to ascertain the spatial correlation. The 
formulas for calculating these indices are as follows:

� (1)

� (2)

where n represents the total number of spatial units, wij 
denotes the spatial weight, and yi corresponds to the observed 
value in the ith region.

The global Moran’s I statistic spans from −1 to 1. A value 
greater than 0 indicates positive spatial autocorrelation 
within the dataset. Additionally, as this value approaches 
1, the observed positive spatial autocorrelation intensifies. 

Conversely, a value below 0 implies negative spatial 
autocorrelation, where values nearing −1 reflect an 
increasingly strong negative spatial autocorrelation.

The local indicator of spatial association (LISA) is a spatial 
decomposition of the global spatial correlation detection 
index. The LISA metric effectively captures the correlation 
traits of each spatial unit with its adjacent counterparts, and 
facilitates the identification of ‘cluster areas’ – zones of either 
high or low aggregation. Additionally, it aids in pinpointing 
‘hotspot areas’, which are regions exhibiting values distinctly 
divergent from those of their neighboring units.

A positive local Moran’s I index represents a region where 
a high value is surrounded by high values, or a region where 
a low value is surrounded by low values. A negative local 
Moran’s I index represents a region where a high value is 
surrounded by low values, or a region where a low value is 
surrounded by high values.

The incorporation of spatial weighting matrices is essential 
to depict inter-regional relationships in conducting spatial 
econometric analysis. To methodically examine the spatial 
correlation attributes across various regions in Gansu, the 
current study utilized the spatial adjacency matrix W1, the 
spatial distance matrix W2, and the spatial economy matrix 
W3. The elements of W1 were defined as follows:

                                                                       .

The aim was to strengthen the robustness of the analytical 
outcomes and investigate whether the spatial spill-over effect 
will be affected by the distance between 2 regions, that is, 
as spatial proximity increases, the spatial effect intensifies; 
conversely, as distance expands, the spatial effect diminishes. 
A spatial distance matrix was constructed. W2 is defined in 
the following manner:

                                                                         .

where dij is the distance between the geographic centres of 
region i and region j.

The spatial adjacency matrix and spatial distance matrix 
only reflect the impact of geographic proximity. To improve 
the reliability of the analytical outcomes and to explore 
whether economic variables influence the spatial spill-over 
effect between 2 regions, a spatial weight matrix was used 
to predicate economic distance, designated as W3 [20]. The 
element setting form is as follows:

                                                                                              .

where Xj represents the economic variable chosen to form 
the spatial weight matrix; in the presented study, per capita 
GDP (pgdp) is used. Ji is the set of all spatial units that share 
a common boundary with spatial unit i.

Spatial econometric model. A spatial econometric model 
was used to assess the influence of atmospheric pollutants on 
mortality rates of residents in Gansu, and calculates the direct 
effects and spatial spillover effects. Three panel data models 
were adopted: the Traditional Linear Regression Model 
(TLRM), Spatial Autoregressive Model (SAR), and the Spatial 
Error Model (SEM) [21], to test spatial effects. Building on the 
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where n represents the total number of spatial units, wij denotes the spatial weight, 

and yi corresponds to the observed value in the ith region.

The global Moran's I statistic spans from −1 to 1. A value greater than 0 indicates 

positive spatial autocorrelation within the dataset. Additionally, as this value 

approaches 1, the observed positive spatial autocorrelation intensifies. Conversely, a 

value below 0 implies negative spatial autocorrelation, where values nearing −1 

reflect an increasingly strong negative spatial autocorrelation.

The local indicator of spatial association (LISA) is a spatial decomposition of the 

global spatial correlation detection index. The LISA metric effectively captures the 

correlation traits of each spatial unit with its adjacent counterparts, and facilitates the 

identification of ‘cluster areas’ - zones of either high or low aggregation. Additionally, 

it aids in pinpointing ‘hotspot areas’, which are regions exhibiting values distinctly 

divergent from those of their neighboring units.

A positive local Moran’s I index represents a region where a high value is 

surrounded by high values, or a region where a low value is surrounded by low values. 

A negative local Moran’s I index represents a region where a high value is surrounded 
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traditional panel model, the SAR incorporates a spatial lag 
term of the dependent variable, while the SEM introduces a 
spatial lag effect of the error term. After these modifications, 
we developed the following three models:

TLRM:

� (3)

SAR:

� (4)

SEM:

� (5)

where:
–– Y is the dependent variable (mortality);
–– AQI_med is the core independent variable;
–– pop_den, hos_res, pgdp, ind_str, and old are control 
variables;

–– X denotes the afore-mentioned primary independent 
variables and control variables; 

–– xit represents the vector of observed values of K explanatory 
variables for the ith individual at time t;

–– W is the spatial weight matrix;
–– wij is the element of the ith row and jth column of the spatial 
weight matrix W;

–– α is a scalar representing the intercept term;
–– β represents the coefficient of the impact of the independent 
variables on the dependent variable;

–– λ represents the spatial autoregressive coefficient;
–– ρ represents the spatial error coefficient;
–– εit is a normally distributed random error vector;
–– i represents regions;
–– t represents year.

By combining spatial dependence and individual effect 
forms, the model of spatial panel data is categorized into 4 
distinct types [21]. When the sample must infer population 
properties through specific individual properties, the random 
effects model was chosen; when regression analysis is limited 
to some specific individuals, the fixed effects model was 
chosen (Zhao, Fang, and Wu 2014). In the current study, the 
spatial econometric model applies to all cities and states in 
Gansu; consequently, the fixed effects model was selected 
for this analysis.

Model test. Anselin extended the Lagrange multiplier tests 
(i.e., LM-lag and LM-err) in the cross-sectional model to the 
panel data model. Additionally, Elhorst provided the robust 
spatial error LM test (RLM-lag) and robust spatial error LM 
test (RLM-error), which should be applied judiciously [21]. 
The above methods were used to test the selection of SAR and 
SEM models. Since this test is influenced by the fixed effects 
within the model, it is essential to first ascertain the suitable 
model form based on the outcomes of the non-spatial fixed 

effect model. Subsequently, the LM test for spatial interaction 
effects should be implemented [21]. Additionally, this test 
is specifically effective for distinguishing between the SAR 
and the SEM. When both LM-lag and LM-error tests yield 
significant results, it is necessary to proceed with the robust 
LM-lag and LM-error tests. If these tests are also significant, 
other spatial models need to be considered [22].

RESULTS

Descriptive statistics.

Table 1 presents the descriptive statistics of the panel data 
during the study period (2015 – 2022, excluding 2020). The 
minimum value of AQI_med is 35 (Gannan, 2021), and the 
maximum value is 80 (Lanzhou, 2016; Lanzhou, 2017). The 
minimum mortality rate is 3.98‰ (Jiayuguan, 2016), and 
the maximum – 10.55‰ (Wuwei, 2022).

Description of spatial distribution of the AQI and mortality 
rates in Gansu.

Figure 2 shows the spatial distribution of AQI_med values 
(Figure 2a1, a2, a3) and mortality rates (Fig. 2b1, b2, b3) 
for all selected areas within Gansu Province in 2015, 2018, 
and 2022. These specific years and the most recent year 
(2022) were chose for analysis due to the revisions of the 
lawc in 2015 and 2018. Figure 2a1, a2, a3 shows that the 
high-value regions of AQI_med are mainly divided into 2 
parts: 1) concentrated in Lanzhou City and the neighbouring 
cities of Baiyin and Wuwei; the other part is Jiuquan City. 
Figure 2b1, b2, b3 shows that the high values of mortality are 
predominantly localized in the southern cities of Gansu. A 
notable characteristic of this Figure is that the extent of air 
pollution in Gansu Province exhibits clear spatial clustering 
tendencies, meaning that regions experiencing the highest 
levels of air pollution are grouped closely together, as are 
those with the minimal levels of pollution. Similar to air 
pollution, mortality rates of the permanent population also 
have certain clustering characteristics.

Spatial autocorrelation analysis of AQI and mortality rates 
in Gansu.

Table 2 presents the global Moran’s index for mortality 
rate and AQI_med under different spatial weight matrices. 

Table 1. Descriptive statistics

Variable Obs Mean S.D. Min Median Max

mortality 98 6.883 1.4930 3.98 6.80 10.55

AQI_med 98 63.460 8.9832 35 64 80

PM2.5_med 98 26.730 6.6616 10 26 42

PM10_med 98 64.540 15.5430 29 62 104

pop_den 98 133.710 89.5313 5.54 83.68 337.48

hos_res 98 0.262 0.1247 0.0657 0.2674 0.6717

pgdp 98 4.441 3.0141 1.099 3.271 12.016

ind_str 98 0.688 0.5465 0.2004 0.5060 3.1123

old 98 10.753 1.8363 7.40 10.45 15.09

c. Air Pollution Prevention and Control Law of the People’s Republic 
of China

∑ ∑ ∑
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For AQI_med, under the W1 condition, the global Moran’s 
I in 2017 was significantly positive at the 10% level, and the 
global Moran’s I in 2015 and 2019 was significantly positive 
at the 5% level; the global Moran’s I in 2018, 2021, and 2022 
was significantly positive at the 1% level.

Under the W2 condition, the global Moran’s I in 2017 and 

2019 was significantly positive at the 10% level, and the global 
Moran’s I in 2015, 2018, and 2022 was significantly positive 
at the 5% level; the global Moran’s I in 2021 was significantly 
positive at the 1% level.

Under the W3 condition, the global Moran’s I in 2015, 
2017, and 2019 was significantly positive at the 5% level; the 
global Moran’s I in 2018, 2021, and 2022 was significantly 
positive at the 1% level.

For mortality rates, under the W1 condition, the global 
Moran’s I for 2016 demonstrated significant positivity at the 
10% significance level, while the global Moran’s I between 
2015 – 2019 showed significant positivity at the 5% level. In 
the W2 condition, the global Moran’s I value for both 2016 
and 2022 were notably positive at the 10% level, and from 
2015 – 2019, they remained significantly positive at the 5% 
level. For the W3 condition, the global Moran’s I covering 
the period from 2015 – 2019 was significantly positive at 
the 5% level.

These findings suggest that the distributions of the 
mortality rate and AQI_med in different regions of Gansu 
were not random; instead, they demonstrated clear spatial 
correlation and spatial clustering tendencies throughout 

Figure 2. Spatial distribution of core variables in 2015, 2018, and 2022

Table 2. Global Moran’s I values of mortality rate and AQI_med (2015–
2022, except 2020)

Year
Mortality AQI_med

W1 W2 W3 W1 W2 W3

2015 0.2889** 0.2856** 0.3797** 0.2675** 0.2806** 0.3033**

2016 0.2344* 0.2391* 0.3059** 0.1508 0.1472 0.0607

2017 0.2875** 0.2977** 0.3262** 0.2003* 0.1982* 0.2592**

2018 0.3416** 0.3552** 0.3707** 0.3414*** 0.3404** 0.4348***

2019 0.3448** 0.3578** 0.3800** 0.2878** 0.2175* 0.3624**

2021 0.1027 0.1873 0.0768 0.4612*** 0.4177*** 0.5620***

2022 0.1076 0.1923* 0.0835 0.3747*** 0.3012** 0.4914***

Levels of statistical significance:*** at 1%; ** at 5%, and * at 10%.
Moran’s I values for additional variables are omitted
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the duration of the study. Consequently, when analyzing 
the impact of air pollution on mortality rates in Gansu it is 
imperative to account for spatial correlation; neglecting this 
factor could lead to biased findings.

Figure 3 shows the significant local spatial autocorrelation 
levels of mortality rate and AQI_med in all regions in 2018, 
based on W1, W2, and W3, as well as the significant correlation 
characteristics of spatial individuals with their neighboUrs 
(considering both Z-score and P-value; only the P-value is 
marked in the Figure). The Figure demonstrates that regions 
with significant local Moran’s I primarily exhibit 3 types 
of clustering: high-high (H-H), where both the observed 
value of the local variable and its weighted average among 
neighbors exceed the overall average; low-low (L-L), where 
both the observed and the neighboUring weighted averages 
fall below the overall average; and high-low (H-L), where the 
observed value exceeds the average but the weighted average 
among neighboUrs does not. Notably, no low-high (L-H) 
clusters are present where the observed value is below the 
average, yet the neighbouring weighted average surpasses it.

Figures 3a1, a2, and a3 show that for the AQI_med in 
2018, the findings from the 3 spatial weight matrices display 

a general consistency. Wuwei, Baiyin and Lanzhou in the 
central part of Gansu Province are H-H value areas, and the 
cities of Tianshui and Longnan in the southern part of Gansu 
Province are L-L value areas. Figure 3b1, b2, b3 shows that 
for mortality in 2018, the findings from the 3 spatial weight 
matrices display a general consistency. The city of Wuwei is 
an L-L value area; the city of Zhangye is an H-L value area; 
and the cities of Tianshui, Longnan, and Gannan in the 
southern part of Gansu Province, are H-H value areas. These 
findings largely align with prior conclusions. Additionally, it 
has been observed that varying spatial weight matrices exert 
an influence on the local Moran’s I.

Spatial econometrics analysis. Table 3 shows the LM test for 
spatial interaction effects. Considering the test results and the 
consistency of model usage, it was decided to use the panel 
spatial autoregressive model with time–space fixed effects.

In the current study, the annual median AQI_med was 
used primarily as the independent variable to examine 
the spatial spill-over effects of air pollution on residents’ 
mortality rates. To mitigate selection bias in the independent 
variables, PM2.5_med and PM10_med, two types of inhalable 

Figure 3. Spatial distribution of core variables W1, W2, and W3 for 2018: significance levels in local Moran’s I analysis of AQI_med 
and mortality rates
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particulate matter, were selected as substitutes for AQI_
med to ensure the robustness of the experiment. The model 
employed a panel spatial autoregressive model with time-
space fixed effects, and robustness checks were conducted 
under W1, W2 and W3. The spatial econometric results are 

presented in Table 4, indicating that the coefficients for AQI_
med, PM2.5_med, and PM10_med were all significantly 
positive at the 1% significance level. Additionally, the panel 
spatial autoregressive coefficient (lambda) was significantly 
positive at the 5% significance level.

Due to the distinctive nature of spatial econometric 
models, direct identification of spatial spillover effects is 
not straightforward. Table 5 presents the analysis in which 
the direct, spillover was quantified, as well as the cumulative 
impacts of AQI_med on mortality rates. The direct and 
total effects of AQI_med were both statistically significant 
at the 1% level, while the spill-over effect was significant at 
the 5% level. Specifically, the direct effect of AQI_med was 
0.0512, and the spillover effect was 0.0238. The total effect 
was 0.0750, with spill-over accounting for 31.73% of this 
total. This indicates that a 1% rise in AQI_med in a local area 
and its neighbouring regions leads to mortality increases of 
5.12% and 2.38%, respectively. In summary, air pollution in 
the Gansu region elevates mortality rates both locally and 
in neighbouring cities – a significant effect that warrants 
attention. Under the W2 and W3 spatial weight matrices, the 
direct and total effects from the panel spatial autoregressive 
model with time-space fixed effects were significant at the 
1% level, while the spillover effect was significant at the 5% 
level. Specifically, under W2, the direct effect of AQI_med 
was 0.0485, the spill-over effect was 0.0249, and the total 
effect – 0.0735, with spillover contributing 33.88% of the 
total impact. This implies that a 1% increase in AQI_med in 
a local area and its surroundings leads to mortality increases 
of 4.85% and 2.49%, respectively. Under W3, the direct effect 
of AQI_med was 0.0514, the spillover effect – 0.0149, and the 
total effect – 0.0663, with spill-over representing 22.47% of 
the total impact. This indicates that a 1% rise in AQI_med 
in a local area and its surrounding regions corresponds to 
mortality increases of 5.14% and 1.49%, respectively. This 

Table 3. Results of the Lagrange multiplier test

Spatial Weight 
Matrix

Test  
Type

Mixed 
regression

Space  
fixed

Time  
fixed

Time-space 
fixed

W1 LM-lag 16.264 
(0.000)

35.18 
(0.000)

3.3525 
(0.067)

4.9506 
(0.026)

LM-error 9.5228 
(0.002)

24.497 
(0.012)

3.272 
(0.070)

0.34605 
(0.556)

RLM-lag 7.7679 
(0.005)

10.684 
(0.001)

0.2242 
(0.636)

9.398 
(0.002)

RLM-error 1.0271 
(0.311)

0.0014 
(0.970)

0.14362 
(0.705)

4.7934 
(0.029)

W2 LM-lag 17.366 
(0.000)

37.382 
(0.000)

6.110 
(0.013)

7.354 
(0.026)

LM-error 11.977 
(0.000)

30.033 
(0.000)

6.752 
(0.009)

1.826 
(0.177)

RLM-lag 5.641 
(0.018)

7.643 
(0.006)

0.154 
(0.695)

7.736 
(0.005)

RLM-error 0.252 
(0.616)

0.294 
(0.588)

0.796 
(0.372)

2.208 
(0.137)

W3 LM-lag 13.896 
(0.001)

28.512 
(0.000)

3.873 
(0.049)

3.500 
(0.061)

LM-error 10.436 
(0.001)

27.612 
(0.012)

4.154 
(0.042)

0.381 
(0.537)

RLM-lag 3.472 
(0.062)

2.816 
(0.093)

0.162 
(0.688)

4.908 
(0.027)

RLM-error 0.012 
(0.912)

1.916 
(0.166)

0.443 
(0.506)

1.790 
(0.181)

Number within parentheses represents the P-value

Table 4. Results of the SAR robustness tests (replacing the spatial weight matrix and variables)

Variables TIME-SPACE FIXED PANEL SAR MODEL

W1 W2 W3

AQI_med 0.0491*** 
(0.0118)

0.0459*** 
(0.0115)

0.0502*** 
(0.0120)

PM2.5_med 0.0303*** 
(0.0117)

0.0281*** 
(0.0113)

0.3152*** 
(0.0119)

PM10_med 0.0193*** 
(0.0067)

0.0170*** 
(0.0066)

0.0203*** 
(0.0068)

pop_den -0.0078 
(0.0063)

-0.0086 
(0.0068)

-0.0043 
(0.0066)

-0.0088 
(0.0062)

-0.0098 
(0.0066)

-0.0055 
(0.0064)

-0.0072 
(0.0066)

-0.0080 
(0.0071)

-0038  
(0.0068)

hos_res -0.1581 
(0.7992)

0.3053 
(0.8268)

0.0212 
(0.8347)

-0.3432 
(0.7781)

0.1035 
(0.8001)

-0.1433 
(0.8133)

-0.3145 
(0.8166)

0.1625 
(0.8433)

-1389  
(0.8495)

pgdp 0.1655*** 
(0.0436)

0.1405*** 
(0.0453)

0.1457*** 
(0.0451)

0.1532*** 
(0.0426)

0.1284*** 
(0.0117)

0.1341*** 
(0.0440)

0.1746*** 
(0.0446)

0.1490*** 
(0.0462)

0.1539*** 
(0.0459)

ind_str 0.0015 
(0.2488)

-0.0538 
(0.2647)

0.0041 
(0.2600)

-0.0018 
(0.2438)

-0.0477 
(0.2578)

0.0073 
(0.2550)

0.0208 
(0.2549)

-0.0780 
(0.2707)

0.0203 
(0.0068)

old 0.4137*** 
(0.0821)

0.4152*** 
(0.0886)

0.4467*** 
(0.0847)

0.3840*** 
(0.0808)

0.3786*** 
(0.0866)

0.4164*** 
(0.0834)

0.4466*** 
(0.0860)

0.4473*** 
(0.0851)

0.4756*** 
(0.0882)

lambda 0.3453*** 
(0.0833)

0.3271*** 
(0.0068)

0.3361*** 
(0.0908)

0.3749*** 
(0.0836)

0.3746*** 
(0.0851)

0.3683*** 
(0.0860)

0.3453*** 
(0.0833)

0.2245** 
(0.0876)

0.2408*** 
(0.0864)

Log-Likelihood -31.5426 -36.2611 -35.5600 -29.8609 -34.2538 -33.9927 -32.9462 -37.5559 -36.7322

R² 0.9515 0.9464 0.9472 0.9537 0.9494 0.9496 0.9492 0.9440 0.9451

Obs 98 98 98 98 98 98 98 98 98

Levels of statistical significance: *** at 1%; ** at 5%; * at 10%. The figures in parentheses indicate standard errors
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further corroborates the conclusion that severe air pollution 
in Gansu, accounting for spatial factors, increases mortality 
rates and has a notable spillover effect. Additionally, the 
results vary somewhat depending on the spatial weight 
matrices used.

DISCUSSION

A study on the impact of air pollution on health and the 
economy in India provides evidence that air pollution 
significantly increases the risk of mortality. This research 
examined the effects and trends of PM2.5, ozone, and 
household air pollution on mortality, distinguishing between 
indoor and outdoor exposure scenarios [23]. Compared 
to the study on Indian, the current research employed the 
AQI as the core variable, considering a wider spectrum of 
air pollutants, thereby offering a more comprehensive and 
accurate representation of the overall impact of air pollution. 
Although the study in India provides a detailed distinction 
between indoor and outdoor pollution exposure, which 
enhances the precision of analysis, its assessment of outdoor 
pollution is limited to PM2.5 and ozone, without fully 
accounting for the effects of other pollutants. Additionally, 
while the study highlights the spatial heterogeneity of air 
pollution, it does not employ spatial statistical methods 
to examine the spatial correlation and clustering effects of 
pollution.

Previous research in China has shown that PM2.5 
concentrations exhibit significant spatial clustering. Regions 
with the highest PM2.5 pollution tend to cluster together, as 
do those with minimal pollution [10]. This finding broadly 
aligns with the results of the current study. By examining 
air pollution across 14 regions in Gansu Province, it was 
found that severe pollution is mainly concentrated in the 
central part of the province, with Lanzhou experiencing the 
highest levels of air pollution. One major distinction is that 
existing studies on air pollution in China primarily focus on 
the economically-developed eastern regions, such as Beijing-
Tianjin-Hebei (Jing-Jin-Ji), the Yangtze River Delta, and 
the Pearl River Delta, whereas the current study centres on 
Gansu Province. Additionally, the study examines the spatial 
distribution of AQI, whereas previous studies primarily 
concentrated on PM2.5, which may result in differences 
in findings. The authors hypothesize that this is due to 
the combined influence of multiple factors, leading to the 
most severe air pollution in Lanzhou, which has the largest 
population density. In addition, the terrain of Lanzhou 
comprises a narrow and long valley area, and it is difficult 

for public transportation to develop, such as rail transit, 
meaning that Lanzhou has enormous traffic pressure. Heavy 
vehicle emissions make the local air pollution in Lanzhou 
the most severe in Gansu. However, the mortality rate in 
Lanzhou and its surrounding cities, which also have the most 
severe pollution, is not the highest. This is because Lanzhou 
and its surrounding cities have sufficient medical resources, 
and residents can receive timely treatment when necessary. 
In contrast, the less-developed southern regions of Gansu 
exhibit relatively high mortality rates.

A study conducted in China on the impact of PM2.5 on 
the burden on public health provides evidence suggesting 
that air pollution not only directly affects public health, but 
also influences health outcomes through spatial spill-over 
effects. Moreover, the health impact of PM2.5 exhibits both 
spatial and temporal lag effects [16]. The afore-mentioned 
study examined the health effects of PM2.5 from both 
temporal and spatial perspectives. However, as with most 
studies, it focused on a single air pollutant. This approach 
may lead to an over-estimation of impact of PM2.5 on 
health, while potentially underestimating the actual effects 
of other pollutants. The study additionally analyzed multiple 
regions across the country, while research on the impact 
of air pollution on health across different prefecture-level 
cities within the same province has been relatively scarce. 
By analyzing the correlation between air pollution levels 
and mortality rates across prefecture-level cities in Gansu 
Province, the results were found to be largely consistent 
with existing research [8], specifically, that air pollution 
in Gansu Province is positively correlated with mortality 
rates. The findings of the current study contribute to the 
body of research on the health impacts of air pollution in 
the Gansu Province in northwestern China. Furthermore, 
the study also reveals that air pollution in Gansu not only 
increases the mortality rate among local residents, but also 
affects mortality rates in adjacent cities, suggesting spill-
over effects on health outcomes. It is hypothesize that this 
phenomenon can be attributed to the rise in air pollution 
levels, as measured by AQI, in a given region, which in turn 
contributes to an increase in pollution levels in neighbouring 
areas, ultimately manifesting as a spatial spill-over effect.

The presented study investigated the differences in direct 
effects, spatial spill-over effects, and total effects of air pollution 
on mortality under different spatial weight matrices (W1, 
W2, and W3), while simultaneously conducting robustness 
tests. Research shows that the impact of air pollution on 
mortality rates of residents is not exactly the same under 
different spatial weight matrices [16]. The current findings 
indicate that the direct and spatial impacts of air pollution 
exposure on mortality are influenced by both geographic 
and regional economic characteristics, aligning with the 
results mentioned in previous research. Using spatial weight 
matrices W1, W2, and W3, the direct impacts of air pollution 
on mortality were observed to be 0.0512 (W1), 0.0485 (W2), 
and 0.0514 (W3), and the values of spatial lag effects were 
0.0238 (W1), 0.0249 (W2), and 0.0149 (W3).

Comparing the data, it was found that the spatial spill-
over effect between 2 locations with a close geographic 
relationship was significantly greater than that between 2 
locations with close economic relationships; also, the spatial 
spillover effect of air pollution on mortality rates was stronger 
when the geographic relationship was close. The closer the 
geographic distance, the easier it is for air pollutants to 

Table 5. Effects and coefficients of the spatial autoregressive model SAR

Variable Spatial weight 
matrix

Values Direct 
Effects

Spatial 
Spillover

Total

AQI_med

W1

Impact measures 
or Estimat

0.0512*** 
(0.0124)

0.0238** 
(0.0116)

0.0750*** 
(0.0216)

z-values 4.1371 2.1544 3.5452

W2

Impact measures 
or Estimat

0.0485*** 
(0.0122)

0.0249** 
(0.0116)

0.0735*** 
(0.0214)

z-values 4.018 2.2942 3.5004

W3

Impact measures 
or Estimat

0.0514*** 
(0.0124)

0.0149** 
(0.0079)

0.0663*** 
(0.0178)

z-values 4.1794 1.9742 3.7702
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cause spatial lag effects on nearby cities, that is, the increase 
in local air pollution levels will increase the air pollution 
levels of adjacent cities, thereby affecting the mortality rate 
in adjacent cities.

The main advantage of the presented study is that 
calculations were conducted based simply on PM2.5 or a 
single pollutant, but calculations were conducted based on 
the specificity of the AQI calculation method. Using the 
median AQI as the core independent variable, the effect 
was examined of air pollution on mortality with different 
pollutants as the main pollutants, considering the combined 
impact of multiple pollutants, and avoiding neglect of the 
impact of other pollutants on mortality when PM2.5 is not 
the main pollutant. In addition, the main influencing factors 
were controlled, including the number of elderly people, 
population density, per capita GDP, and per capita hospital 
resources. Based on W1, W2, and W3, using the panel 
spatial autoregressive model with time-space fixed effects, a 
quantitative analysis was conducted to determine the direct 
influence of air pollution on mortality rates in the area, as 
well as its spatial spill-over effect on neighbouring areas.

Limitations of the study. The authors acknowledge that 
the study has some shortcomings of research. The absence 
of extensive data precluded the possibility of conducting a 
longitudinal panel data analysis. Moreover, specific data for 
cities surrounding Gansu were unobtainable, and disparate 
statistical standards used in the yearbooks of these cities 
compared to Gansu, introduced bias into the results. This 
bias hinders the ability to accurately assess the impact 
of air pollution on the mortality rates in Gansu and its 
neighbouring cities.

CONCLUSIONS

The primary findings can be summarized as follows.
1)	Within Gansu Province, the distribution of mortality 

rates and air pollution across various regions exhibits 
significant spatial correlations and clustering tendencies. 
A discernible positive spatial correlation exists between air 
pollution levels and mortality rates among the permanent 
population.

2)	Air pollution significantly negatively affects the health of 
residents in Gansu. When air pollution becomes severe, the 
mortality rate among permanent residents is increased. Air 
pollution exhibits a spatial spill-over effect on the mortality 
rate, that is, the air pollution in a particular region of Gansu 
will not only increase the mortality rate of local residents, 
but will also increase the mortality rate of residents in 
adjacent cities. This is an impact that cannot be ignored.

3)	The spatial spill-over effect between 2 locations with close 
geographic relationships is significantly greater than that 
between 2 locations with close economic relationships, and 
the spatial spill-over effect of air pollution on mortality 
rates will be stronger when the geographic relationship 
is close.

The findings examining the relationship between AQI and 
mortality rates should be considered when formulating air 
pollution control policies. During the study period, Lanzhou 
was consistently one of the cities with the most severe air 
pollution. As the economy and technology advance, it is 
important to address the air pollution associated with these 

developments. Data from the Traffic Police Detachment of 
the Lanzhou Municipal Public Security Bureau reveal that by 
the end of June 2023, the motor vehicle count in Lanzhou had 
escalated to 1,277,284, of which merely 2.96% were comprised 
of new energy vehicles. The government should formulate 
corresponding policies to encourage citizens to switch to 
renewable energy vehicles or use public transportation.

Furthermore, owing to the findings, regions should 
strengthen cooperation, share pollution control information 
technology, jointly control air pollution, strengthen enterprise 
control, and severely punish or close enterprises that are 
heavy polluters and that do not comply with the regulations. 
High-pollution enterprises should undergo technological 
transformation and reduce pollutants produced during 
their production processes. Simply moving heavily polluting 
factories from urban areas to the suburbs cannot solve the 
problem at its root because air pollution in cities where these 
factories are located will be aggravated, which affects not only 
local residents but also the residents in surrounding cities. 
To improve the quality of life and ensure the well-being of 
local residents, local governments in various regions must 
implement measures to control air pollution.

Abbreviations
–– AQI – Air Quality Index; 
–– PM10 – Particulate Matter; 
–– PM2.5 – Inhalable particles
–– GDP – Gross Domestic Product
–– LISA – Local Indicator of Spatial Association
–– TLRM – Traditional Linear Regression Model
–– SAR – Spatial Autoregressive Model
–– SEM – Spatial Error Model
–– LM – Lagrange Multiplier tests
–– H-H – both the observed value of the local variable and 
its weighted average among neighbours exceed the overall 
average

–– L-L – both the observed and the neighboring weighted 
averages fall below the overall average

–– H-L – the observed value exceeds the average, but the 
weighted average among neighbours does not

–– L-H – the observed value falls below the average, but the 
weighted average among neighbours does not
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