REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Tularaemia is an infrequently occurring disease in Poland. It has therefore rarely been taken into account in the differential diagnosis of skin lesions, lymphadenitis, or soft tissue abscesses. This fact, accompanied by non-specific initial presentation, may lead to a delay in diagnosis and a more severe course of the disease. Objective. The aim of the study is to present the current state of knowledge on tularaemia and convince medical professionals to take it into consideration in the diagnosis of skin lesions, lymphadenitis, and tissue abscesses.

Review methods:
A literature review using PubMed and other online resources, using terms including ‘tularaemia’, ‘lymphadenitis’, etc., was undertaken. Papers were reviewed for relevance and scientific merit.

Abbreviated description of the state of knowledge:
Tularaemia, also known as ‘rabbit fever’, is a zoonotic infection caused by Francisella tularensis, an aerobic, facultative intracellular, gram-negative bacteria. In Europe, it is mainly spread via tick bites and contact with wild animals such as lagomorphs and rodents. Clinical presentation may differ depending on the transmission route; the ulceroglandular and glandular forms of disease predominate. An early diagnosis and implementation of appropriate antibiotic therapy are the cornerstones of successful treatment and make it possible to avoid a surgical incision and drainage of suppurative complications.

Summary:
Raised awareness and knowledge on tularaemia among health care professionals are required for timely diagnosis and treatment. Arrival from endemic areas, contact with wild animals, tick bites, and exclusion of more common etiologies of presenting signs should prompt consideration of tularaemia. More research is needed for a better understanding of the burden of the disease and its impact on public health in Poland.

REFERENCES (107)
1.
WHO Guidelines on Tularemia. World Health Organization, France 2007. WHO/CDS/EPR/2007.7.
 
2.
Hestvik G, Warns-Petit E, Smith LA, et al. The status of tularemia in Europe in a one-health context: a review. Epidemiol Infect. 2015; 143(10): 2137–2160. https://doi.org/10.1017/S09502....
 
3.
Choroby zakaźny i zatrucia w Polsce w 2019 roku. Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny.
 
4.
Chróst A, Gielarowiec K, Kalużewski S, et al. The occurrence of infections caused by Francisella tularensis in humans in Poland and laboratory diagnosis of tularemia. Med Dosw Mikrobiol. 2017; 69(1): 55–63.
 
5.
Karli A, Şensoy G, Paksu Ş, et al. Treatment-failure tularemia in children. Korean J Pediatr. 2018; 61(2): 49–52. https://doi.org/10.3345/kjp.20....
 
6.
Caspar Y, Hennebique A, Maurin M. Antibiotic susceptibility of Francisella tularensis subsp. holarctica strains isolated from tularaemia patients in France between 2006 and 2016. J Antimicrob Chemother. 2018; 73(3): 687–691. https://doi.org/10.1093/jac/dk....
 
7.
McCoy GW, Chapin CC. Studies of plague, a plague-like disease and tuberculosis among rodents in California. J Infect Dis. 1912; 6: 170–180.
 
8.
Hirschmann JV. From Squirrels to Biological Weapons: The Early History of Tularemia. Am J Med Sci. 2018; 356(4): 319–328. https://doi.org/10.1016/j.amjm....
 
9.
Francis E. Symptoms, diagnosis and pathology of tularemia, JAMA 1928; 91: 1151–1161.
 
10.
Francis E. Sources of infection and seasonal incidence of tularaemia in man. Public Health Rep 1937; 52: 103–113.
 
11.
Skrodzki E. Tularemia. PZWL. 1978.
 
12.
Pollitzer R. History and incidence of tularemia in the Soviet Union. A review. Bronx, NY: Fordham University Press; 1967. p. 2.
 
13.
Maurin M. Francisella tularensis as a potential agent of bioterrorism? Expert Rev Anti Infect Ther. 2015; 13(2): 141–144. https://doi.org/10.1586/147872....
 
15.
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 2014; 4: 35. https://doi.org/10.3389/fcimb.....
 
16.
Dunaj J, Drewnowska J, Moniuszko-Malinowska A, et al. First metagenomic report of Borrelia americana and Borrelia carolinensis in Poland – a preliminary study. Ann Agric Environ Med. 2021; 28(1): 49–55. https://doi.org/10.26444/aaem/....
 
17.
Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. Lancet Infect Dis. 2016; 16(1): 113–124. https://doi.org/10.1016/S1473-....
 
18.
Annual Epidemiological Report 2019. Tularaemia – Annual Epidemio-logical Report for 2019.
 
19.
Dryselius R, Hjertqvist M, Mäkitalo S, et al. Large outbreak of tularaemia, central Sweden, July to September 2019. Euro Surveill. 2019; 24(42): 1900603. https://doi.org/10.2807/1560-7....
 
20.
Formińska K, Wołkowicz T, Brodzik K, et al. Genetic diversity of Francisella tularensis in Poland with comments on MLVA genotyping and a proposition of a novel rapid v4-genotyping. Ticks Tick Borne Dis. 2020; 11(2): 101322. https://doi.org/10.1016/j.ttbd....
 
21.
Zellner B, Huntley JF. Ticks and Tularemia: Do We Know What We Don‘t Know? Front Cell Infect Microbiol. 2019; 9: 146. https://doi.org/10.3389/fcimb.....
 
22.
Yeni DK, Büyük F, Ashraf A, et al. Tularemia: a re-emerging tick-borne infectious disease. Folia Microbiol (Praha). 2021; 66(1): 1–14. https://doi.org/10.1007/s12223....
 
23.
Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg Microbes Infect. 2019; 8(1): 1027–1042. https://doi.org/10.1080/222217....
 
24.
Borlu A, Benli AR, Doganay M. Epidemiological features of tularaemia in Central Anatolia, Turkey. Trop Doct. 2019; 49(4): 264–268. https://doi.org/10.1177/004947....
 
25.
Lindhusen Lindhé E, Hjertqvist M, Wahab T. Outbreak of tularaemia connected to a contaminated well in the Västra Götaland region in Sweden. Zoonoses Public Health. 2018; 65(1): 142–146. https://doi.org/10.1111/zph.12....
 
26.
Formińska K, Zasada AA, Rastawicki W, et al. Increasing role of arthropod bites in tularaemia transmission in Poland – case reports and diagnostic methods. Ann Agric Environ Med. 2015; 22(3): 443–446. https://doi.org/10.5604/123219....
 
27.
Moniuszko A, Zajkowska J, Pancewicz S, et al. Arthropod-borne tularemia in Poland: a case report. Vector Borne Zoonotic Dis. 2011; 11(10): 1399–1401. https://doi.org/10.1089/vbz.20....
 
28.
Switaj K, Olszynska-Krowicka M, Zarnowska-Prymek H, et al. Tularaemia after tick exposure – typical presentation of rare disease misdiagnosed as atypical presentation of common diseases: a case report. Cases J. 2009; 2: 7954. https://doi.org/10.4076/1757-1....
 
29.
Wójcik-Fatla A, Zając V, Sawczyn A, et al. Occurrence of Francisella spp. in Dermacentor reticulatus and Ixodes ricinus ticks collected in eastern Poland. Ticks Tick Borne Dis. 2015; 6(3): 253–257. https://doi.org/10.1016/j.ttbd....
 
30.
Bielawska-Drózd A, Cieślik P, Żakowska D, et al. Detection of Coxiella burnetii and Francisella tularensis in Tissues of Wild-living Animals and in Ticks of North-west Poland. Pol J Microbiol. 2018; 67(4): 529–534. https://doi.org/10.21307/pjm-2....
 
31.
Pacewicz S, Zajkowska M, Świerzbińska R, et al. Czy kleszcze są wektorami tularemii u mieszkańców Połnocno-Wschodniej Polski? Med Pr. 2004; 55(2): 189–192.
 
32.
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis Cold Spring Harb Perspect Med. 2013; 3(4): a010314. https://doi.org/10.1101/cshper....
 
33.
Roberts LM, Powell DA, Frelinger JA. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development. Front Cell Infect Microbiol. 2018; 8: 115. https://doi.org/10.3389/fcimb.....
 
34.
Carvalho CL, Lopes de Carvalho I, Zé-Zé L, et al. Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis. 2014; 37(2): 85–96. https://doi.org/10.1016/j.cimi....
 
35.
Formińska K, Zasada AA. FRANCISELLA TULARENSIS – PODSTĘPNY PATOGEN. Post Mikrobiol. 2017; 56(2): 187–195.
 
36.
Jones BD, Faron M, Rasmussen JA, et al. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol. 2014; 4: 32. https://doi.org/10.3389/fcimb.....
 
37.
Cowley SC, Elkins KL. Immunity to Francisella. Front Microbiol. 2011; 2: 26. https://doi.org/10.3389/fmicb.....
 
38.
Frischknecht M, Meier A, Mani B, et al. Tularemia: an experience of 13 cases including a rare myocarditis in a referral center in Eastern Switzerland (Central Europe) and a review of the literature. Infection. 2019; 47(5): 683–695. https://doi.org/10.1007/s15010....
 
39.
Marks L, Spec A. Glandular Tularemia. N Engl J Med. 2018; 379(10): 967. https://doi.org/10.1056/NEJMic....
 
40.
Treat JR, Hess SD, McGowan KL, et al. Ulceroglandular tularemia. Pediatr Dermatol. 2011; 28(3): 318–320. https://doi.org/10.1111/j.1525....
 
41.
Anand N, Deochand O, Murphy R. Imaging Findings of Ulceroglandular Tularemia. J Radiol Case Rep. 2017; 11(1): 1–6. https://doi.org/10.3941/jrcr.v....
 
42.
Cieślik P, Knap J, Bielawska-Drózd A. Francisella tularensis-review. Adv Microbiol. 2019; 57(1): 58–67. https://doi.org/10.21307/PM-20....
 
43.
Liou TN, George IA, Ghogomu N. A Woman With Bilateral Cervical Lymphadenopathy. JAMA Otolaryngol Head Neck Surg. 2016; 142(8): 799–800. https://doi.org/10.1001/jamaot....
 
44.
Steinrücken J, Graber P. Oropharyngeal tularemia. CMAJ. 2014; 186(1): E62. https://doi.org/10.1503/cmaj.1....
 
45.
Tärnvik A, Berglund L. Tularaemia. Eur Respir J. 2003; 21(2): 361–373. https://doi.org/10.1183/090319....
 
46.
Navarro P, Garcia-Moliner ML, McMahon JH, et al. Histologic, immunohistochemical, microbiological, molecular biological and ultrastructural characterization of pulmonary tularemia. Pathol Res Pract. 2011; 207(1): 63–66. https://doi.org/10.1016/j.prp.....
 
47.
Fachinger P, Tini GM, Grobholz R, et al. Pulmonary tularaemia: all that looks like cancer is not necessarily cancer – case report of four consecutive cases. BMC Pulm Med. 2015; 15: 27. https://doi.org/10.1186/s12890....
 
48.
Ranjbar R, Behzadi P, Mammina C. Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing. Open Microbiol J. 2016; 10: 176–182. https://doi.org/10.2174/187428....
 
49.
Kravdal A, Stubhaug OO, Wago AG, et al. Pulmonary tularaemia: a differential diagnosis to lung cancer. ERJ Open Res. 2020; 6(2): 00093–2019. https://doi.org/10.1183/231205....
 
50.
Eren Gok S, Kocagul Celikbas A, Baykam N, et al. Evaluation of tularemia cases focusing on the oculoglandular form. J Infect Dev Ctries. 2014; 8(10): 1277–1284. https://doi.org/10.3855/jidc.3....
 
51.
Alias T, Fallahzadeh MK, Berhe M. Tularemia presenting as pulmonary nodules in an immunocompromised patient. Proc (Bayl Univ Med Cent). 2017; 30(2): 175–176. https://doi.org/10.1080/089982....
 
52.
Foster CL, Badlam J, De Groote MA, et al. A 65-Year-Old Grounds-keeper With High Fever, Pulmonary Nodules, and Thoracic Lymphadenopathy. Chest. 2016; 149(6): e191–e194. https://doi.org/10.1016/j.ches....
 
53.
Nakamura K, Fujita H, Miura T, et al. A case of typhoidal tularemia in a male Japanese farmer. Int J Infect Dis. 2018; 71: 56–58. https://doi.org/10.1016/j.ijid....
 
54.
Rothweiler R, Fuessinger MA, Schmelzeisen R, et al. Lymph node abscess caused by Francisella tularensis – a rare differential diagnosis for cervical lymph node swelling: a case report. J Med Case Rep. 2019; 13(1): 247. https://doi.org/10.1186/s13256....
 
55.
Polat M, Karapinar T, Sirmatel F. Dermatological aspects of tularaemia: a study of 168 cases. Clin Exp Dermatol. 2018; 43(7): 770–774. https://doi.org/10.1111/ced.13....
 
56.
Hofinger DM, Cardona L, Mertz GJ, et al. Tularemic meningitis in the United States. Arch Neurol. 2009; 66(4): 523–527. https://doi.org/10.1001/archne....
 
57.
Gangat N. Cerebral abscesses complicating tularemia meningitis. Scand J Infect Dis. 2007; 39(3): 258–261. https://doi.org/10.1080/003655....
 
58.
Köse HC, Hoşal MB. A Rare Complication of Oropharyngeal Tularemia: Dacryocystitis. Turk J Ophthalmol. 2019; 49(3): 164–167. https://doi.org/10.4274/tjo.ga....
 
59.
Gaci R, Alauzet C, Selton-Suty C, et al. Francisella tularensis endo-carditis: two case reports and a literature review. Infect Dis (Lond). 2017; 49(2): 128–131. https://doi.org/10.1080/237442....
 
60.
Maurin M. Francisella tularensis, Tularemia and Serological Diagnosis. Front Cell Infect Microbiol. 2020; 10: 512090. https://doi.org/10.3389/fcimb.....
 
61.
Cubero Á, Durántez C, Almaraz A, et al. Usefulness of a single-assay chemiluminescence test (Tularaemia VIRCLIA IgG + IgM monotest) for the diagnosis of human tularemia. Comparison of five serological tests. Eur J Clin Microbiol Infect Dis. 2018; 37(4): 643–649. https://doi.org/10.1007/s10096....
 
62.
Rastawicki W, Rokosz-Chudziak N, Chróst A, et al. Development and evaluation of a latex agglutination test for the rapid serodiagnosis of tularemia. J Microbiol Methods. 2015; 112: 1–2. https://doi.org/10.1016/j.mime....
 
63.
Splettstoesser WD, Tomaso H, Al Dahouk S, et al. Diagnostic procedures in tularaemia with special focus on molecular and immunological techniques. J Vet Med B Infect Dis Vet Public Health. 2005; 52(6): 249–261. https://doi.org/10.1111/j.1439....
 
64.
Rastawicki W, Formińska K, Zasada AA. Development and Evaluation of a Latex Agglutination Test for the Identification of Francisella tularensis Subspecies Pathogenic for Human. Pol J Microbiol. 2018; 67(2): 241–244. https://doi.org/10.21307/pjm-2....
 
65.
Birdsell DN, Vogler AJ, Buchhagen J, et al. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. PLoS One. 2014; 9(9): e107964. https://doi.org/10.1371/journa....
 
66.
Gunnell MK, Adams BJ, Robison RA. The Genetic Diversity and Evolution of Francisella tularensis with Comments on Detection by PCR. Curr Issues Mol Biol. 2016; 18: 79–91. https://doi.org/10.1016/j.mime....
 
67.
Rudrik JT, Soehnlen MK, Perry MJ, et al. Safety and Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Highly Pathogenic Organisms. J Clin Microbiol. 2017; 55(12): 3513–3529. https://doi.org/10.1128/JCM.01....
 
68.
Banada PP, Deshpande S, Chakravorty S, et al. Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System. J Clin Microbiol. 2016; 55(1): 291–301. https://doi.org/10.1128/JCM.01....
 
69.
Tuncer E, Onal B, Simsek G, et al. Tularemia: potential role of cytopathology in differential diagnosis of cervical lymphadenitis: multicenter experience in 53 cases and literature review. APMIS. 2014; 122(3): 236–242. https://doi.org/10.1111/apm.12....
 
70.
Karabay O, Kilic S, Gurcan S, et al. Cervical lymphadenitis: tuberculosis or tularaemia? Clin Microbiol Infect. 2013; 19(2): E113-E117. https://doi.org/10.1111/1469-0....
 
71.
Larru B., Gerber JS. Cutaneous bacterial infections caused by Staphylo-coccus aureus and Streptococcus pyogenes in infants and children. Pediatr Clin North Am. 2014; 61(2): 457–478. https://doi.org/10.1016/j.pcl.....
 
72.
Dunay IR, Gajurel K, Dhakal R, et al. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Montoya Clin Microbiol Rev. 2018; 31(4): e00057–17. https://doi.org/10.1128/CMR.00....
 
73.
Mazur-Melewska K, Mania A, Kemnitz P, et al. Cat-scratch disease: a wide spectrum of clinical pictures. Postepy Dermatol Alergol. 2015; 32(3): 216–220. https://doi.org/10.5114/pdia.2....
 
74.
Franco-Paredes C, Marcos LA, Henao-Martínez AF, et al. Cutaneous Mycobacterial Infections. Clin Microbiol Rev. 2018; 32(1): e00069-18. https://doi.org/10.1128/CMR.00....
 
75.
Nangle S, Mitra S, Roskos S, et al. Cytomegalovirus infection in immunocompetent adults: Is observation still the best strategy? IDCases. 2018; 14: e00442. https://doi.org/10.1016/j.idcr....
 
76.
Dunmire SK, Verghese PS, Balfour HH Jr. Primary Epstein-Barr virus infection. J Clin Virol. 2018; 102: 84–92. https://doi.org/10.1016/j.jcv.....
 
77.
Gu J, Su QQ, Zuo TT, et al. Adenovirus diseases: a systematic review and meta-analysis of 228 case reports. Infection. 2021; 49(1): 1–13. https://doi.org/10.1007/s15010....
 
78.
Robb ML, Eller LA, Kibuuka H, et al. RV 217 Study Team. Prospective Study of Acute HIV-1 Infection in Adults in East Africa and Thailand. N Engl J Med. 2016; 374(22): 2120–2130. https://doi.org/10.1056/NEJMoa....
 
79.
Storck K, Brandstetter M, Keller U, et al. Clinical presentation and characteristics of lymphoma in the head and neck region. Head Face Med. 2019; 15(1): 1. https://doi.org/10.1186/s13005....
 
80.
Anthrax in Humans and Animals.4th edition. Geneva: World Health Organization; 2008.
 
81.
Körmöndi S, Terhes G, Pál Z, et al. Human Pasteurellosis Health Risk for Elderly Persons Living with Companion Animals. Emerg Infect Dis. 2019; 25(2): 229–235. https://doi.org/10.3201/eid250....
 
82.
López C, Sanchez-Rubio P, Betrán A, et al. Pasteurella multocida bacterial meningitis caused by contact with pigs. Braz J Microbiol. 2013; 44(2): 473–474. https://doi.org/10.1590/S1517-....
 
83.
Epidemiological situation of rickettsioses in EU/EFTA coutries. ECDC report. 2010.
 
84.
Galy A, Loubet P, Peiffer-Smadja N, et al. The plague: An overview and hot topics. Rev Med Interne.2018; 39(11): 863–868. https://doi.org/10.1016/j.revm....
 
85.
Annual Epidemiological Report 2017. Plague – Annual Epidemiological Report for 2017.
 
86.
Avijgan M, Rostamnezhad M, Jahanbani-Ardakani H. Clinical and serological approach to patients with brucellosis: A common diagnostic dilemma and a worldwide perspective. Microb Pathog. 2019; 129: 125–130. https://doi.org/10.1016/j.micp....
 
87.
Le Turnier P, Epelboin L. [Update on leptospirosis]. Rev Med Interne. 2019; 40(5): 306–312. https://doi.org/10.1016/j.revm....
 
88.
Vanasco NB, Schmeling MF, Lottersberger J, et al. Clinical characteristics and risk factors of human leptospirosis in Argentina (1999–2005). Acta Trop. 2008; 107(3): 255–258. https://doi.org/10.1016/j.acta....
 
89.
Fiecek B, Lewandowska G, Rogulska U, et al. Leptospirosis in Poland in the years 2014–2017 – characteristics of infections and epidemiological surveillance data. Przegl Epidemiol. 2018; 72(3): 303–312. https://doi.org/10.32394/pe.72....
 
90.
Tirado-Sánchez A, Bonifaz A. Nodular Lymphangitis (Sporotrichoid Lymphocutaneous Infections). Clues to Differential Diagnosis. J Fungi (Basel). 2018; 4(2): 56. https://doi.org/10.3390/jof402....
 
91.
White M, Adams L, Phan C, et al. Disseminated sporotrichosis following iatrogenic immunosuppression for suspected pyoderma gangrenosum. Lancet Infect Dis. 2019; 19(11): e385-e391. https://doi.org/10.1016/S1473-....
 
92.
Sharma L, Losier A, Tolbert T, et al. Atypical Pneumonia: Updates on Legionella, Chlamydophila, and Mycoplasma Pneumonia. Clin Chest Med. 2017; 38(1): 45–58. https://doi.org/10.1016/j.ccm.....
 
93.
Newman H, Gooding C. Viral ocular manifestations: a broad overview. Rev Med Virol. 2013; 23(5): 281–294. https://doi.org/10.1002/rmv.17....
 
94.
Chmielewski T, Fiecek B, Lewandowska G, et al. Francisella tularensis/Rickettsia spp. co-infections in patients with skin changes and lymphadenopathy. Arch Med Sci. 2018; 14(2): 357–360 https://doi.org/10.5114/aoms.2....
 
95.
Rastawicki W, Chmielewski T, Łasecka-Zadrożna J. Kinetics of the immune response to Francisella tularensis and Borrelia burgdorferi in a 10-year-old girl with oculoglandular form of tularemia after a single tick bite: A case report. Journal of Vector Borne Disease 2021, Accepted for publication. Ahead of Print. https://doi.org/10.4103/0972-9....
 
96.
Caspar Y, Maurin M. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models. Front Cell Infect Microbiol. 2017; 7: 122. https://doi.org/10.3389/fcimb.....
 
97.
Dentan C, Pavese P, Pelloux I, et al. Treatment of tularemia in pregnant woman, France. Emerg Infect Dis. 2013; 19(6): 996–998. https://doi.org/10.3201/eid190....
 
98.
Johnsrud JJ, Smith CR, Bradsher RW. Serendipitous Treatment of Tularemia in Pregnancy. Open Forum Infect Dis. 2019; 6(10): ofz413. https://doi.org/10.1093/ofid/o....
 
99.
Gaci R, Alauzet C, Selton-Suty C, et al. Francisella tularensis endo-carditis: two case reports and a literature review. Infect Dis (Lond). 2017; 49(2): 128–131. https://doi.org/10.1080/237442....
 
100.
Boisset S, Caspar Y, Sutera V, et al. New therapeutic approaches for treatment of tularaemia: a review. Front Cell Infect Microbiol. 2014; 4: 40. https://doi.org/10.3389/fcimb.....
 
101.
Maurin M. New anti-infective strategies for treatment of tularemia. Front Cell Infect Microbiol. 2014; 4: 115. https://doi.org/10.3389/fcimb.....
 
102.
Hamblin KA, Wong JP, Blanchard JD, et al. The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy. Front Cell Infect Microbiol. 2014; 4: 79. https://doi.org/10.3389/fcimb.....
 
103.
Spidlova P, Stojkova P, Sjöstedt A, et al. Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors. Microorganisms. 2020; 8(10): 1622. https://doi.org/10.3390/microo....
 
104.
Sutera V, Caspar Y, Boisset S, et al. A new dye uptake assay to test the activity of antibiotics against intracellular Francisella tularensis. Front Cell Infect Microbiol. 2014; 4: 36. https://doi.org/10.3389/fcimb.....
 
105.
Schmitt DM, O‘Dee DM, Cowan BN, et al. The use of resazurin as a novel antimicrobial agent against Francisella tularensis. Front Cell Infect Microbiol. 2013; 3: 93. https://doi.org/10.3389/fcimb.....
 
106.
Hong KJ, Park PG, Seo SH, et al. Current status of vaccine development for tularemia preparedness. Clin Exp Vaccine Res. 2013; 2(1): 34–39. https://doi.org/ 10.7774/cevr.2013.2.1.34.
 
107.
Skyberg JA. Immunotherapy for tularemia. Virulence. 2013; 4(8): 859–70. https://doi.org/10.4161/viru.2....
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top