REVIEW PAPER
The role of ghrelin, leptin and insulin in foetal development
More details
Hide details
1
The Physiology Department of the K. Marcinkowski University of Medical Science in Poznan, Poland
2
The Mother and Child Health Department of the K. Marcinkowski University of Medical Science in Poznan, Poland
3
Department of Allergology and Environmental Hazards, Institute of Rural Health, Lublin, Poland
4
Stanisłw Staszic University of Applied Sciences in Piła, Poland
Ann Agric Environ Med. 2014;21(2):349-352
KEYWORDS
ABSTRACT
Introduction and objective:
The growing epidemic of childhood obesity has forced scientists to search for methods to prevent feeding disorders. Increasing interest in appetite regulating hormones has revealed their influence on energy homeostasis after birth or even in utero.
State of knowledge:
The presence of ghrelin in the stomach of human foetuses and the distinctive production in the pancreas of neonates suggests the role of ghrelin in pre- and post-natal development. The neonatal period appears to be a critical time for the formation of adipose tissue-hypothalamus circuits, thus the amount of adipocytes in foetal life may be a major regulator of food intake. Insulin’s orexigenic effect in the arcuate nucleus of the hypothalamus can be a major modulator of foetal development.
Objective:
This review, based on available literature, aims to analyses the role of appetite regulating hormones in foetal development.
Summary:
Different concentrations of hormones, such as ghrelin, leptin and insulin during foetal life raises the question whether or not they can be modulated, thereby avoiding obesity before birth. Children with pancreas agenesis showed smaller body size at birth, which emphasises the probable role of insulin in foetal growth. Study of sheep foetuses with IUGR confirmed these finding. Appetite-regulating hormones show different roles in foetal development and seem to be essential in the perinatal period.
REFERENCES (51)
1.
Możdżan M, Ruxer J, Loba J. Grelina – hormon o wielokierunkowym działaniu. Diabetologia Praktyczna 2005; 1: 55–61 (in Polish).
2.
Dytfeld J, Pupek-Musialik D. Hormony przewodu pokarmowego regulujące łaknienie — oś jelito–mózg. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii 2005; 1: 24–30 (in Polish).
3.
Wierup N, Svensson H, Mulder H et al. The ghrelin cell: a novel developmentally regulated islet cell in human pancreas. Regul Pept. 2002; 107: 63–69.
4.
Chanoine JP. Ghrelin in growth and development. Horm Res. 2005; 63: 129–38.
5.
Fonseca VM, Sichieri R, Moreira ME, Moura AS. Early postnatal growth in preterm infants and cord blood leptin. J Perinatol. 2004; 24: 751–756.
6.
Mami C, Manganaro R, Saitta G et al. Plasma leptin, insulin, and neuropeptide Y concentrations in infants. Arch Dis Child Fetal Neonatal Ed. 2005; 90: 86–87.
7.
Hales CN, Barker DJ. The thirfty phenotype hypothesis. Br Med Bull. 2001; 60: 5–20.
8.
Śledzińska M, Liberek A, Kamińska B. Hormony tkanki tłuszczowej a otyłość u dzieci i młodzieży. Medycyna Wieku Rozwojowego 2009;4: 244–251 (in Polish).
9.
Mitrović O, Mićić M, Todorović V, et al. Ghrelin endocrine cells in the human stomach during prenatal and early postnatal development. Archives of Biological Sciences 2011; 1: 21–28.
10.
Marx J. Cellular Warriors at the Battle of the Bulge. Science. 2003; 299: 846–849.
11.
Horvath TL. The hardship of obesity: a soft-wired hypothalamus. Nature Neuroscience 2005; 8: 561–565.
12.
Kojima M, Hosoda H, Date Y et al. Ghrelin is a growth- hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656–60.
13.
Kędzia A, Przybyszewska W, Grelina – nowy hormon zaangażowany w regulację i homeostazę metaboliczną organizmu. Endokrynologia pediatryczna 2007; 20: 53–60 (in Polish).
14.
Polińska B, Matowicka-Karna J, Kemona H. Rola greliny w organiźmie. Postepy Hig Med Dosw. 2011; 65: 1–7 (in Polish).
15.
Nikolopoulos D, Theocharis S, Kouraklis G. Ghrelin, another factor affecting bone metabolism. Med Sci Monit. 2010; 16: 147–162.
16.
Gualillo O, Lago F, Gomez-Reino J et al. Ghrelin, a widespread hormone: insights into molecular and cellular regulation of its expression and mechanism of action. FEBS Lett. 2003; 552: 105–109.
17.
Hou Z, Miao Y, Gao L et al. Ghrelin-containing neuron in cerebral cortex and hypothalamus linked with the DVC of brainstem in rat. Regul Pept. 2006; 134: 126–131.
18.
Kageyama H, Kitamura Y, Hosono T, et al. Visualization of ghrelin-producing neurons in the hypothalamic arcuate nucleus using ghrelin-EGFP transgenic mice. Regul Pept. 2008; 145: 116–121.
19.
Lu S, Guan JL, Wang QP et al. Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci Lett. 2002; 321: 157–160.
20.
Mondal MS, Date Y, Yamaguchi H, et al. Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept. 2005; 126: 55–59.
21.
Ueberberg B, Unger N, Saeger W, et al. Expression of ghrelin and its receptor in human tissues. Horm Metab Res. 2009; 41: 814–821.
22.
Sakata I, Nakamura K, Yamazaki M, et al. Ghrelin-producing cells exist as two types of cells, closed- and opened-type cells, in the rat gastrointestinal tract. Peptides. 2002; 23: 531–536.
23.
Hattori N, Saito T, Yagyu T, et al. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab. 2001; 86: 4284–4291.
24.
Żukiewicz-Sobczak W, Krasowska E, Zwoliński J, Sobczak P, Chmielewska-Badora J, Wróblewska P, Piątek J, Wojtyła A. Allergic diseases – current state of knowledge. Advances in Dermatology and Allergology 2012; 30 (6): 451-455.
25.
Żukiewicz-Sobczak W,Wróblewska P, Adamczuk P, Kopczyński P. Causes, symptoms and prevention of food allergy. Advances in Dermatology and Allergology 2013; 30(2): 113–116.
26.
Volante M, Fulcheri E, Allia E et al. Ghrelin expression in fetal, infant, and adult human lung. J Histochem Cytochem. 2002; 50: 1013–1021.
27.
Prado CL, Pugh-Bernard AE, Elghazi L, et al. Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci USA. 2004; 101: 2924–292.
28.
Castaneda TR, Tong J, Datta R, et al. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol. 2010; 31: 44–60.
29.
Kojima M, Kangawa K. Ghrelin: more than endogenous growth hormone secretagogue. Ann N Y Acad Sci. 2010; 1200: 140–148.
30.
Date Y, Toshinai K, Koda S, et al. Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology. 2005; 146: 3518–3525.
31.
Le Roux CW, Neary NM, Halsey TJ, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab. 2005; 90: 4521–4524.
32.
Arnold M, Mura A, Langhans W, et al. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci. 2006; 26: 11052–11060.
33.
Date Y, Shimbara T, Koda S, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metabolism. 2006; 4: 323–331.
34.
Gross P, Jean-Baptiste F, Siba Lemba TA, Zoror K. Signaling by ghrelin, insulin and leptin in hyphothalamus, Obesity Project 2009, Université Bordeaux, France.
35.
Authesserre N, Debourdeau G, Ostrofet E, et al. Homeostatic regulation of food intake. Obesity Project, University of Bordeaux. 2009
http://www.cellbiol.net/ste/al... (access: 2013.03.11).
36.
Zhang Y, Scarpace PJ. The role of leptin in leptin resistance and obesity. Physiol Behav. 2006; 88: 249–256.
37.
Trayhurn P, Bing C. Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond B Biol Sci. 2006; 361: 1237–1249.
38.
Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004; 59: 305–331.
39.
Bury A, Kulik-Rechberger B. Programowanie otyłości rozpoczyna się w okresie płodowym – rola leptyny. Endokrynologia Pediatryczna. 2010; 9: 41–48 (in Polish).
40.
Malendowicz L, Rucinski M, Belloni A. Leptin and the regulation of the hypothalamic–pituitary–adrenal axis. Int Rev Cytol. 2007; 263: 63–102.
41.
Cortelazzi D, Cappiello V, Morpurgo PS, et al. Circulating levels of ghrelin in human fetuses. Eur J Endocrinol. 2003; 149: 111–116.
42.
Chanoine JP, Wong AC. Ghrelin gene expression is markedly higher in fetal pancreas compared with fetal stomach: effect of maternal fasting. Endocrinology. 2004; 145: 3813–3820.
43.
Kędzia A, Chmielnicka-Kopaczyk M, Uklejewska D, et al. Immuno-histochemical assesment of ghrelin expression and receptor(GHS-R) in human fetal organs. Arch Perinat Med. 2006; 12: 12–16.
44.
Aparicio T, Kermorgant S, Darmoul D, et al. Leptin and Ob-Rb receptor isoform in the human digestive tract during fetal development. J Clin Endocrinol Metab. 2005; 90: 6177–6184.
45.
Matochik JA, London ED, Yildiz BO, et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab. 2005; 90: 2851–2854.
46.
Udagawa J, Hashimoto R, Suzuki H, et al. The role of leptin in the development of the cerebral cortex in mouse embryos. Endocrinology. 2006, 147, 647–658.
47.
Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004; 304: 108–110.
48.
Bouret SG, Simerly RB. Development of leptin-sensitive circuits. J Neuroendocrinol. 2007; 19: 575–582.
49.
King RG, Osmond DT, Brennecke SP, et al. Effecct of fetal makrosomia on human placental glucose transport and utilization in insulin-treated gestational diabtetes. J Perinat Med. 2003; 31: 475–48.
50.
Pedersen J. Weight and length at birth of infants of diabetic mothers. Acta Endocrinologica 1954; 16: 330–342.
51.
Limesand SW, Jensen J, Hutton JC, et al. Diminished β-cell replication contributes to reduced β-cell mass in fetal sheep with intrauterine growth restriction. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2005; 288: 1297–1305.