Introduction: Although airborne fungal diversity in tropical countries is known to be considerable, aerobiological research to-date has identified only a part of the fungal mycobiota that may have an impact both on human health and on crops. Previous studies in Havana city identified only 30 genera and 5 spore types; therefore,new research is required in these latitudes. This study sought to investigate airborne spore levels in Havana, with a view to learning more about local fungal diversity and assessing its influence in quantitative terms.
Material and methods: A Hirst type volumetric sampler was located on the rooftop of a building 35 meters above ground level, in a busy area of the city. Sampling was carried out continuously (operating 24hours/day), at 10 L per minute during the year 2015. The fungal spores were collected on a Melinex tape coated with a 2% silicone solution. The results were expressed as spores per cubic meter (spores/m3) of air when to referring to daily values, and spores count if referring to annual value.
Results: Fourteen new genera were identified in the course of volumetric sampling: six produce ascospores and eight conidia. Morphobiometric characteristics were noted for all genera, and airborne concentrations were calculated. These genera accounted for 56.4% of relative fungal frequency over the study year.
Conclusions: Many airbone fungi are primary causes of both respiratory disease and crop damage. These new findings constitute a major contribution to Cuba’s aerobiological database.
REFERENCES(82)
1.
Frenguelli G. The contribution of aerobiology to agriculture. Aerobiologia. 1998; 14(2–3): 95–100.
Bezerra GFDB, Gomes SM, Silva MACND, Santos RMD, Muniz Filho WE, et al. Diversity and dynamics of airborne fungi in São Luis, State of Maranhão, Brazil. Rev Soc Bras MedTrop. 2014; 47(1):69–73.
Quintero E, Rivera-Mariani F, Bolaños-Rosero B. Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiologia. 2010;26(2): 113–124.
Venero SJ, Varona P, Fabret D, Suárez R, Bonet M, Molina E. Asma bronquial y rinitis en escolares de Ciudad de La Habana (2001 a 2002). Revista Cubana de Higiene y Epidemiología. 2010; 47(1): 1–5.
Caraballo L, Puerta L, Fernandez-Caldas E, Lockey RF, Martinez B. Sensitization to mite allergens and acute asthma in a tropical environment. J Investig Allergol Clin Immunol. 1998; 8(5): 281–4.
Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Rojas TI. Study of airborne fungus spores by viable and non-viable methods in Havana, Cuba. Grana. 2013; 52(4): 289–298.
Sánchez KC, Almaguer M. Efecto de la temperatura sobre aislados de Cladosporium cladosporioides recolectados del aire de La Habana, Cuba. NACC. 2018; 25:21–29.
Fernández-González M, Ramos-Valcárcel D, Aira MJ, Rodríguez-Rajo FJ. Prediction of biological sensors appearance with ARIMA models as a tool for Integrated Pest Management protocols. Ann Agric Environ Med. 2016; 3(1): 129–37. doi: 10.5604/12321966.1196868.
Manzano JMM, Molina RT, Rodríguez SF, Barroso PD, Palacios IS, Garijo AG. Airborne propagules of Phytophthora and related taxa in SW Spain including a predictive model. Eur J Plant Pathol. 2015; 143(3): 473–483.
Levetin E. Aerobiology of Agricultural Pathogens, p 3.2.8–1–3.2.8–20. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. 2016.
Di Carlo E, Chisesi R, Barresi G, Barbaro S, Lombardo G, Rotolo V, Sebastianelli M, Travagliato M, Palla F. Fungi and bacteria in indoor cultural heritage environments: microbial-related risks for artworks and human health. Environ Ecol Res. 2016; 4(5): 257–264.
Anaya M, Borrego S, Gámez E, Castro M, Molina A, Valdés O. Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia. 2016; 32: 513–527.
Prasla I, Duman K, Ciochetto Z, Burman A, Mahon A, Park S. et al. Significant heterogeneity in airborne mold quantities on the Caribbean Island of St. Kitts: Health implications and impact on food preservation. Virol Mycol. 2013; 3(1):1–5.
Ravikala KL, Nagalakshamma KV. Survey on outdoor airborne fungal spores of Tumkur city, Karnataka state, India. Int J Pharma BioSciences. 2016; 7(1): 575–577.
Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Rojas TI. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters. Int J Biometeorol. 2014; 58(7): 1459–1470.
Castillo L, Pastrana JC. Diagnóstico del arbolado viario de El Vedado: composición, distribución y conflictos con el espacio construido. Arquitectura y Urbanismo. 2015; 36(2): 93–118.
Galán, C., P. Cariñanos, P. Alcázar, and E. Dominguez. Manual of quality and management of the Spanish aerobiology network. Servicio de Publicaciones de la Universidad de Córdoba, Spain, 2007.
Cotos-Yáñez TR, Rodríguez-Rajo FJ, Pérez-González A, Aira MJ, Jato V. Quality control in aerobiology: comparison different slide reading methods. Aerobiologia. 2013; 29(1): 1–11.
Kaczmarek J, Jędryczka M. Characterization of two coexisting pathogen populations of Leptosphaeria spp., the cause of stem canker of Brassicas. Acta Agrobotanica. 2001; 64(2):3–14.
Hasnain S, Akhter T, Waqar M. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. J Env Monit. 2012; 14: 1006–1013.
Grinn-Gofroń A. The variation in spore concentrations of selected fungal taxa associated with weather conditions in Szczecin, Poland, 2004–2006. Grana. 2008; 47(2): 139–146.
Huanyu L, Zhang R, Guangyu S, Batzer JC, Gleason ML. New species and record of Zygophiala on apple fruit from China. Mycol Progress. 2010; 9(2): 245–251.
Poonyth AD, Hyde KD, Aptroot A, Peerally A. Mauritiana rhizophorae gen. et sp. nov. (Ascomycetes, Requienellaceae), with a list of terrestrial saprobic mangrove fungi. Fungal Diversity. 2000; 4: 101–116.
Sousa L, Camacho IC, Grinn-Gofroń A, Camacho R. Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia. 2016; 32(2), 303–315.
Green B, Sercombe J, Tovey E. Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol. 2005; 115: 1043–1048.
Gonianakis M, Neonakis I, Darivianaki E, Gonianakis I, Bouros D. et al. Airborne Ascomycotina on the island of Crete: Seasonal patterns based on an 8-year volumetric survey. Aerobiologia. 2005; 21: 69–74.
Chew F, Lim S, Shang S, Dahlia S, Goh D et al. Evaluation of the allergenicity of tropical pollen and airborne spores in Singapore. Allergy. 2000; 55: 340–347.
Adhikari A, Sen M, Gupta-Bhattacharya S, Chanda S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations. Sci Total Env. 2004; 326: 23–141.
Das S, Gupta-Bhattacharya S. Monitoring and assessment of airborne fungi in Kolkata, India, by viable and non-viable air sampling methods. Env Monit Assess. 2012; 184: 4671–4684.
Martínez X, Tejera L, Beri Á. First volumetric record of fungal spores in the atmosphere of Montevideo City, Uruguay: a 2-year survey. Aerobiologia. 2016; 32: 317–333.
Bruno A, Pace L, Tomassetti B, Coppola E, Verdecchia M et al. Estimation of fungal spore concentrations associated to meteorological variables. Aerobiologia. 2007; 23: 221–228.
Pyrri I, Kapsanaki-Gosti E. A comparative study on the airborne fungi in Athens, Greece, by viable and nonviable sampling methods. Aerobiologia. 2007; 23: 3–15.
Herrera A. Impacto de la agricultura urbana en Cuba. Novedades Población, CEDEM, Centro de Estudios Demográficos, Universidad de La Habana, 5(9): 1–14, 2009.
Ataygul E, Celenk S, Canitez Y, Bicakci A, Malyer H, Sapan N. Allergenic fungal spore concentrations in the atmosphere of Bursa, Turkey. J Biol Environ Sci. 2007; 1(2): 73–79.
Rivera-Mariani FE, Nazario-Jimenez S, Lopez-Malpica F, Bolanos-Rosero B. Skin test reactivity of allergic subjects to basidiomycetes’ crude extracts in a tropical environment. Med Mycol. 2011; 49(8): 887–91.
Blatter J, Forno E, Brehm J, Acosta-Perez E, Alvarez M, Colon-Semidey A, Thorne PS, Metwali N, Canino G, Celedon JC. Fungal exposure, atopy, and asthma exacerbations in Puerto Rican children. Ann Am Thorac Soc. 2014; 11(6):925–32.
Rosas I, McCartney HA, Payne RW, Calderon C, Lacey J, Chapela R, Ruiz-Velazco S. Analysis of the relationships between environmental factors (aeroallergens, air pollution, and weather) and asthma emergency admissions to a hospital in Mexico City. Allergy. 1998; 53(4): 394–401.
Njokuocha RC, Agwu CO, Okezie CE. Effects of weather conditions on selected airborne fungal spores in the Southern part of the Atate of Enugu, Nigeria. Grana. 2017; 56(4): 263–272.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.