RESEARCH PAPER
Nesfatin-1 prevents negative changes in bone in conditions of developing osteopenia
 
More details
Hide details
1
University of Life Sciences, Lublin, Poland
 
 
Corresponding author
Iwona Puzio   

University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland
 
 
Ann Agric Environ Med. 2020;27(1):66-75
 
KEYWORDS
TOPICS
ABSTRACT
Objective:
The aim of the study was to determine the effect of nesfatin-1 on bone properties in female rats in the conditions of developing osteopenia induced by ovariectomy (OVX).

Material and methods:
The experiment was performed on 21 female Wistar rats assigned to 3 groups receiving intraperitoneally physiological saline (SHO, OVX-PhS) and nesfatin-1 in dose 2 μg/kg BW of (OVX-NES) once a day for 8 wks. At the end of the experiment, the rats were scanned using the DXA method to determine the body composition, tBMC, and tBMD. The isolated femora and tibia were tested with the DXA method for BMD and BMC, and with the pQCT method for separate analysis of the cortical and trabecular bone tissue. The bone strength parameters were also determined. The immunohistochemical method was used for determination of nesfatin-1 localization in growth cartilage. Bone metabolism markers (osteocalcin, bALP, and NTx) were identified using an ELISA kit.

Results:
OVX exerts a negative effect on bone tissue. The nesfatin-1 administration influenced positively the DXA parameters of tibia. TvBMD and TbvBMD measured by pQCT in metaphysis of bones were significantly higher in the OVX-NES group than in OVX-PhS. No differences were found in the values of bone strength parameters between SHO and OVX-NES females. Extra- and intracellular immunohistochemical reaction for nesfatin-1 was observed in all zones of growth cartilage, with the strongest reaction detected in the calcifying zone. Nesfatin-1 administration caused a significant increase in the osteocalcin and bALP concentration in relation to the OVX-PhS animals.

Conclusions:
The results of the experiment indicate that nesfatin-1 exerts a protective effect on bone tissue properties and can be used in the prevention of osteoporosis.
REFERENCES (84)
1.
Qaseem A, Forciea MA, McLean RM, Denberg TD. Clinical Guidelines Committee of the American College of Physicians. Treatment of low bone density or osteoporosis to prevent fractures in men and women: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017; 166(11): 818–839.
 
2.
Levin VA, Jiang X, Kagan R. Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 2018; 29(5): 1049–1055.
 
3.
Hughes DE, Dai A, Tiffee JC, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 1996; 2(10): 1132–1136.
 
4.
Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M. Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res. 1999; 14(7): 1217–1221.
 
5.
Fox C, Edwards MH, Dennison EM, Cooper C. Personal and societal burden of osteoporotic fractures. Clinic Rev Bone Miner Metab. 2015; 13(2): 53–60.
 
6.
Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013; 8: 136.
 
7.
Kanis JA, Hiligsmann M. The application of health technology assessment in osteoporosis. Best Pract Res Clin Endocrin Metab. 2014; 28(6): 895–910.
 
8.
Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, She JX, Della-Fera MA, Baile CA. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res. 2011; 26(8): 1710–1720.
 
9.
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000; 100(2): 197–207.
 
10.
Luo E, Hu J, Bao C, Li Y, Tu Q, Murray D, Chen J. Sustained release of adiponectin improves osteogenesis around hydroxyapatite implants by suppressing osteoclast activity in ovariectomized rabbits. Acta Biomat. 2012; 8(2): 734–743.
 
11.
Oshima K., Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005; 331(2): 520–526.
 
12.
Peng X D, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY. Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta. 2008; 387(1–2): 31–35.
 
13.
Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, Wang Y, Naot D, Reid IR, Cornish J. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res. 2011; 26(8): 1698–1709.
 
14.
Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JB, Costa JL, Orpe A, Broom N, Naot D, Reid IR, Cornish J. In vitro and in vivo effects of adiponectin on bone. Endocrinol. 2009; 150(8): 3603–3610.
 
15.
Wang F, Wang PX, Wu XL, Dang SY, Chen Y, Ni YY, Gao LH, Lu SY, Kuang Y, Huang L, Fei J, Wang ZG, Pang XF. Deficiency of adiponectin protects against ovariectomy – induced osteoporosis in mice. PLoS One 2013; 8(7): e68497.
 
16.
Yamaguchi N, Kukita T, Li YJ, Kamio N, Fukumoto S, Nonaka K, Ninomiya Y, Hanazawa S, Yamashita Y. Adiponectin inhibits induction of TNF-alpha/RANKL-stimulated NFATc1 via the AMPK signaling. FEBS Lett. 2008; 582(3): 451–456.
 
17.
Zhang H, Xie H, Zhao Q, Xie G-Q, Wu X-P, Liao E-Y, Luo X-H. Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J Endocrinol Invest. 2010; 33(10): 707–711.
 
18.
Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguch H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006; 443(7112): 709–712.
 
19.
Stengel A, Goebel-Stengel M, Wang L, Kato I, Mori M, Tache Y. Nesfatin-1 30–59 but not the N- and C-terminal fragments, nesfatin-1 1–29 and nesfatin-1 60–82 injected intracerebroventricularly decreases dark phase food intake by increasing inter-meal intervals in mice. Peptides. 2012; 35(2): 143–148.
 
20.
Jiang L, Bao J, Zhou X, Xiong Y, Wu L. Increased serum levels and chondrocyte expression of nesfatin-1 in patients with osteoarthritis and its relation with BMI, hsCRP, and IL-18. Mediators Inflamm. 2013; 631251.
 
21.
Zhang Y, Shui X, Lian X, Wang G. Serum and synovial fluid nesfatin-1 concentration is associated with radiographic severity of knee osteoarthritis. Med Sci Monit. 2015; 21:1078–1082.
 
22.
Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M, Sculco TP, Crow MK. Elevated high sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarth Cartil. 2007; 15(5): 516–523.
 
23.
Inoue H, Hiraoka K, Hoshino T, Okamoto M, Iwanaga T, Zenmyo M, Shoda T, Aizawa H, Nagata K. High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone 2008; 42(6): 1102–1110.
 
24.
Scotece M, Conde J, Abella V, Lopez V, Lago F, Pino J, Gomez-Reino JJ, Gualillo O. NUCB2/nesfatin: A new adipokine expressed in human and murine chondrocytes with pro-inflammatory properties, an in vitro study. J Ortho Res. 2014; 32(5): 653–660.
 
25.
Li R, Wu Q, Zhao Y, Jin W, Yuan X, Wu X, Tang Y, Zhang J, Tan X, Bi F, Liu J-N. The novel pro-osteogenic activity of NUCB2. PLoS ONE 2013; 8(4): e61619.
 
26.
Ferretti JL, Capozza RF, Mondelo N, Montuori E, Zanchetta JR. Interrelationships between densitometric, geometric and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling. J Bone Min Res. 1993; 8(11): 1389–1395.
 
27.
Wronski TJ, Dann LM, Scott KS, Cintrón M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989; 45(6): 360–366.
 
28.
Riggs BL, Melton LJ. The prevention and treatment of osteoporosis. N Engl J Med. 1992; 327(9): 620–627.
 
29.
Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991; 15(3): 175–191.
 
30.
Frost HM, Jee WS. On the rat model of human osteopenias and osteoporoses. Bone Miner. 1992; 18(3): 227–236.
 
31.
Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008; 58(5): 424–430.
 
32.
Rodgers JB, Monier-Faugere MC, Malluche H. Animal models for the study of bone loss after cessation of ovarian function. Bone. 1993; 14(3): 369–77.
 
33.
Mosekilde L. Assessing bone quality – animal models in preclinical osteoporosis research. Bone 1995; 17(4 Suppl): 343S-352S.
 
34.
Morrison JH, Brinton RD, Schmidt PJ, Gore AC. Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neuros. 2006; 26(41): 10332–10348.
 
35.
Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: An inflammatory tale. J Clin Invest. 2006; 116(5): 1186–1194.
 
36.
Gallagher JC. Effect of early menopause on bone mineral density and fractures. Menopause. 2007; 14(3 Pt 2): 567–571.
 
37.
Freeman EW, Sammel MD, Lin H, Gracia CR. Obesity and reproductive hormone levels in the transition to menopause. Menopause. 2010; 17(4): 718–726.
 
38.
Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinol. 2001; 142(8): 3546–3553.
 
39.
Kamei Y, Suzuki M, Miyazaki H., Tsuboyama-Kasaoka N, Wui J, Ishimi Y, Ezaki O. Ovariectomy in mice decreases lipid metabolism-related gene expression in adipose tissue and skeletal muscle with increased body fat. J Nutr Sci Vitaminol. 2005; 51(2): 110–117.
 
40.
Gomes RM, Ferreira MD Junior, Francisco FA, Moreira VM, de Almeida DL, Saavedra LPJ, de Oliveira JC, da Silva Franco CC, Pedrino GR, de Freitas Mathias PC, Natali MRM, Dias MJ, de Morais IJ, de MoraesSMF. Strength training reverses ovariectomy-induced bone loss and improve metabolic parameters in female Wistar rats. Life Sci. 2018; 213: 134–141.
 
41.
Zhao X, Wu Z, Zhang Y, Yan Y, He Q, Cao P, Lei W: Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats. J Ethnopharmacol. 2011; 137(3): 1083- 1088.
 
42.
Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes (Lond). 2008; 32(6): 949–958.
 
43.
Ho SC, Wu S, Chan SG, Sham A. Menopausal transition and changes of body composition: a prospective study in Chinese perimenopausal women. Int J Obes (Lond). 2010; 34(8): 1265–1274.
 
44.
Abdulnour J, Doucet E, Brochu M, Lavoie J-M, Strychar I, Rabasa-Lhoret R, Prud’homme D. The effect of the menopausal transition on body composition and cardiometabolic risk factors: a Montreal-Ottawa New Emerging Team group study. Menopause. 2012; 19(7): 760–767.
 
45.
Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997; 27(4): 325–351.
 
46.
Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006; 443(7109): 289–295.
 
47.
Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009: 41(1): 25–34.
 
48.
Jung UJ, Choi M-S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014; 15(4): 6184–6223.
 
49.
Atsuchi K, Asakawa A, Ushikai M, Ataka K, Tsai M, Koyama K, Sato Y, Fujimiya M, Inui A. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenalmotility in mice. Neuroreport. 2010; 21(15): 1008–1011.
 
50.
Goebel-Stengel M, Wang L, Stengel A, Tache Y. Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res. 2011; 1396: 20–34.
 
51.
Yosten GL, Samson WK. Nesfatin-1 exerts cardiovascular actions in brain: possible interaction with the central melanocortin system. Am J Physiol Regul Integr Comp Physiol. 2009; 297(2): R330-R336.
 
52.
Chen X, Dong J, Jiang ZY. Nesfatin-1 influences the excitability of glucosensingneurons in the hypothalamic nuclei and inhibits the food intake. Regul Pept. 2012; 177(1–3): 21–26.
 
53.
Moreau JM, Ciriello J. Nesfatin-1 induces Fos expression and elicits dipsogenic responses in subfornical organ. Behav Brain Res. 2013; 250: 343–350.
 
54.
Dong J, Guan HZ, Jiang ZY, Chen X. Nesfatin-1 influences the excitability of glucosensing neurons in the dorsal vagal complex and inhibits food intake. PLoS ONE 2014; 9(6): e98967.
 
55.
Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physio-logical evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS ONE 2010; 5(12): e15201.
 
56.
Kerbel B, Unniappan S. Nesfatin-1 suppresses energy intake, co-localises ghrelin in the brain and gut, and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. J Neuroendocrinol. 2012; 24(2): 366–377.
 
57.
Bloem B, Xu L, Morava E, Faludi G, Palkovits M, Roubos EW, Kozicz T. Sex specific differences in the dynamics of cocaine- and amphetamine-regulated tran-script and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls. Neuropharmacol. 2012; 62: 297–303.
 
58.
Konczol K, Pinter O, Ferenczi S, Varga J, Kovacs K, Palkovits M, Zelena D, Toth ZE. Nesfatin-1 exerts long-term effect on food intake and body temperature. Int J Obes. 2012; 36(12): 1514–1521.
 
59.
Shimizu H, Oh-I S, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M. Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinol. 2009; 150(2): 662–671.
 
60.
Jiang S-D, Shen C, Jiang L-S, Dai L-Y. Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int. 2007; 18(6): 743–750.
 
61.
Baofeng L, Zhi Y, Bei C, Guolin M, Qingshui Y, Jian L. Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthop. 2010; 81(3): 396–401.
 
62.
Hernandes L, Ramos AL, Micheletti KR, Santi AP, Cuoghi OA, Salazar M. Densitometry, radiography, and histological assessment of collagen as methods to evaluate femoral bones in an experimental model of osteoporosis. Osteoporos Int. 2012; 23(2): 467–473.
 
63.
Cipriani C, Pepe J, Bertoldo F, Bianchi G, Cantatore FP, Corrado A, Di Stefano M, Frediani B, Gatti D, Giustina A,·Porcelli T, Isaia G. Rossini M,·Nieddu L, Minisola S, Girasole G, Pedrazzoni M. The epidemiology of osteoporosis in Italian postmenopausal women according to the National Bone Health Alliance (NBHA) diagnostic criteria: a multicenter cohort study. J Endocrinol Invest. 2018; 41(4): 431–438.
 
64.
Urano T, Shiraki M, Kuroda T, Tanaka S, Urano F, Uenishi K, Inoue S. Bisphosphonates prevent age-related weight loss in Japanese postmenopausal women. J Bone Min Met. 2018; 36(6):734–740.
 
65.
Thomas T, Burguera B, Melton LJ III, Atkinson E J, O’Fallon WM, Riggs BL, Khosla S. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone. 2001; 29(2): 114–120.
 
66.
Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol. 2001; 55(3): 341–347.
 
67.
Blain H, Vuillemin A, Guillemin F, Durant R, Hanesse B, de Talance N, Doucet B, Jeandel C. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2002; 87(3): 1030–1035.
 
68.
Roux C, Arabi A, Porcher R, Garnero P. Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone. 2003; 33(5): 847–852.
 
69.
Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004; 19(4): 546–551.
 
70.
Hipmair G, Bohler N, Maschek W, Soriguer F, Rojo-Martinez G, Schimetta W, Pichler R. Serum leptin is correlated to high turnover in osteoporosis. Neuro Endocrinol Lett. 2010; 31(1): 155–160.
 
71.
Mohiti-Ardekani J, Soleymani-Salehabadi H, Owlia M, Mohiti A. Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. JBMM. 2014; 32(4): 400–404.
 
72.
Stagi S, Cavalli L, Cavalli T, Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr. 2016; 42(1): 88.
 
73.
Andersson N, Surve VV, Lehto-Axtelius D, Ohlsson C, Håkanson R, Andersson K, Ryberg B. Drug-induced prevention of gastrectomy- and ovariectomy-induced osteopaenia in the young female rat. J Endocrin. 2002; 175(3): 695–703.
 
74.
Radzki RP, Bienko M, Wolski D, Lis A, Radzka A. Lipoic acid stimulates bone formation in ovariectomized rats in a dose-dependent manner. Can J Physiol Pharmacol. 2016; 94(9): 947–954.
 
75.
Nian H, Ma MH, Nian SS, Xu LL. Antiosteoporotic activity of icariin in ovariectomized rats. Phytomed. 2009; 16(4): 320–326.
 
76.
Petersson U, Somogyi E, Reinholt FP, Karlsson T, Sugars RV, Wendel M. Nucleobindin is produced by bone cells and secreted into the osteoid, with a potential role as a modulator of matrix maturation. Bone 2004; 34: 949–960.
 
77.
Vasikaran SD. Utility of biochemical markers of bone turnover and bone mineral density in management of osteoporosis. Crit Rev Clin Lab Sci. 2008; 45(2): 221–258.
 
78.
Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res. 2017; 5: 18.
 
79.
Jagtap VR, Ganu JV, Nagane NS. BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian J Clin Biochem. 2011; 26(1): 70–73.
 
80.
Atalay S, Elci A, Kayadibi H, Onder CB, Aka N. Diagnostic utility of osteocalcin, undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med. 2012; 32(1): 23–30.
 
81.
Christopoulou GE, Stavropoulou A, Anastassopoulos G, Panteliou SD, Papadaki E, Karamanos NK, Panagiotopoulos E. Evaluation of modal damping factor as a diagnostic tool for osteoporosis and its relation with serum osteocalcin and collagen I N-telopeptide for monitoring the efficacy of alendronate in ovariectomized rats. J Pharm Biomed Anal. 2006; 41(3): 891–897.
 
82.
Abdel-Sater KA, Mansour H. Bone biomarkers of ovariectomised rats after leptin therapy. Bratisl Lek Listy 2013; 114(6): 303–307.
 
83.
Hou J-M, Xue Y, Lin Q-M. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol Sin. 2012; 33(10): 1277–1284.
 
84.
Ardawi M-SM, Al-Kadi HA, Rouzi A A, Qari M H. Determinants of serum sclerostin in healthy pre- and postmenopausal women. JBMR. 2011; 26(12): 2812–2822.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top