RESEARCH PAPER
Is prenatal arsenic exposure associated with salivary cortisol in infants in Arica, Chile? An exploratory cohort study
More details
Hide details
1
School of Public Health, Faculty of Medicine, University of Chile, Santiego, Chile
2
Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockvill (MD), United States
3
Population Health Research Institute. McMaster University, Hamilton, Ontario, Canada
Ann Agric Environ Med. 2019;26(2):266-272
KEYWORDS
TOPICS
ABSTRACT
Introduction:
In animal models, gestational exposure to inorganic arsenic has been associated with higher corticosterone concentration and consequent impairment of stress control in offspring. An equivalent association relating cortisol, a glucocorticoid hormone, in humans has not been previously studied.
Objective:
The aim of the study was to explore the association between prenatal inorganic arsenic exposure and salivary cortisol in infants from Arica, Chile.
Material and methods:
A cohort study of 168 mother-child dyads was recruited. In the 2nd trimester of pregnancy, urinary inorganic arsenic was assessed; 18–24 months after delivery, salivary cortisol was measured in the children. Maternal cortisol, maternal depression, stress, and socio-economic status were also evaluated.
Results:
The adjusted association was estimated with multiple linear regression after evaluating confounding through a directed acyclic graph. Median urinary inorganic arsenic in pregnant women was 14.1 µg/L (IQR: 10.4–21.7) while salivary cortisol in the children was 0.17 µg/L (IQR: 0.11–0.38). Among children from the highest income families (> 614 USD/month), arsenic exposure was associated with salivary cortisol. Children in the third quartile of arsenic exposure had -0.769 units of the logarithm of salivary cortiso, compared with those in the first quartile (p = 0.045).
Conclusions:
In this sample, prenatal exposure to arsenic was associated with salivary cortisol (third quartile of inorganic arsenic), only in infants belonging the highest income strata (> 614 USD). More studies are needed to confirm these preliminary results.
REFERENCES (41)
1.
Cantor KP, Lubin JH. Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmacol 2007; 222 (3): 252–257. 10.1016/j.taap.2007.01.026.
2.
Agency for Toxic Substaces and Disease Registry. The Priority List of Hazardous Substances That Will Be the Candidates for Toxicological Profiles. Available online: www.atsdr.cdc.gov/spl/resources/atsdr_2015_spl_support_document.pdf. (Accessed on 03.10.2016).
3.
Yunus M, Sohel N, Hore SK, Rahman M. Arsenic exposure and adverse health effects: a review of recent findings from arsenic and health studies in Matlab, Bangladesh. Kaohsiung J Med Sci. 2011; 27(9): 371–376. 10.1016/j.kjms.2011.05.012.
4.
Martinez-Finley EJ, Goggin SL, Labrecque MT, Allan AM. Reduced expression of MAPK/ERK genes in perinatal arsenic-exposed offspring induced by glucocorticoid receptor deficits. Neurotoxicol Teratol. 2011; 33(5): 530–537. 10.1016/j.ntt.2011.07.003.
5.
Martinez EJ, Kolb BL, Bell A, Savage DD, Allan AM. Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 2008; 29(4): 647–655. 10.1016/j.neuro.2008.05.004.
6.
Martinez-Finley EJ, Ali AM, Allan AM. Learning deficits in C57BL/6J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol Biochem Behav. 2009; 94(2): 271–277. 10.1016/j.pbb.2009.09.006.
7.
Grandjean P, Barouki R, Bellinger DC, Casteleyn L, Chadwick LH, Cordier S, et al. Life-Long Implications of Developmental Exposure to Environmental Stressors: New Perspectives. Endocrinology 2015; 156(10): 3408–3415. 10.1210/EN.2015–1350.
8.
Holleman M, Vreeburg SA, Dekker JJ, Penninx BW. The relationships of working conditions, recent stressors and childhood trauma with salivary cortisol levels. Psychoneuroendocrinology 2012; 37(6): 801–809. 10.1016/j.psyneuen.2011.09.012.
9.
Schreuder MM, Vinkers CH, Mesman E, Claes S, Nolen WA, Hillegers MH. Childhood trauma and HPA axis functionality in offspring of bipolar parents. Psychoneuroendocrinology 2016; 74: 316–323. 10.1016/j.psyneuen.2016.09.017.
10.
Ursache A, Noble KG, Blair C. Socioeconomic Status, Subjective Social Status, and Perceived Stress: Associations with Stress Physiology and Executive Functioning. Behav Med. 2015; 41(3): 145–154. 10.1080/08964289.2015.1024604.
11.
Tarullo AR, St John AM, Meyer JS. Chronic stress in the mother-infant dyad: Maternal hair cortisol, infant salivary cortisol and interactional synchrony. Infant Behav Dev. 2017; 47: 92–102. 10.1016/j.infbeh.2017.03.007.
12.
Ivars K, Nelson N, Theodorsson A, Theodorsson E, Strom JO, Morelius E. Development of Salivary Cortisol Circadian Rhythm and Reference Intervals in Full-Term Infants. PLoS One 2015; 10(6): e0129502. 10.1371/journal.pone.0129502.
13.
Biblioteca del Congreso Nacional de Chile. Historia de la Ley Nº20590. Establece un programa de intervención en zonas con presencia de polimetales en la comuna de Arica. Available online:
https://www.bcn.cl/historiadel... (Accessed on 03.10.2016).
14.
Burgos S, Tenorio M, Zapata P, Cáceres D, Klarian J, Alvarez N, et al. Cognitive Performance Among Cohorts Of Children Exposed To A Waste Disposal Site Containing Lead in Chile. Int J Environ Health Res. 2017; 27(2): 117–125.
15.
Tamayo YOM, Tellez-Rojo MM, Wright RJ, Coull BA, Wright RO. Longitudinal associations of age and prenatal lead exposure on cortisol secretion of 12–24 month-old infants from Mexico City. Environ Health 2016; 15: 41. 10.1186/s12940–016–0124–1.
16.
Salimetrics USA, Expanded Range High Sensitivity Salivary Cortisol. Enzyme Immunoassay Kit Protocol. Available online: www.salimetrics.com/assets/documents/1-3002n.pdf. (Accessed on 27.10.2016).
17.
Nater UM, Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 2009; 34(4): 486–496. 10.1016/j.psyneuen.2009.01.014.
18.
Saxbe DE, Margolin G, Spies Shapiro L, Ramos M, Rodriguez A, Iturralde E. Relative influences: patterns of HPA axis concordance during triadic family interaction. Health Psychol. 2014; 33(3): 273–281. 10.1037/a0033509.
19.
Karlen J, Frostell A, Theodorsson E, Faresjo T, Ludvigsson J. Maternal Influence on Child HPA Axis: A Prospective Study of Cortisol Levels in Hair. Pediatrics 2013; 132(5): e1333-e1340. 10.1542/peds.2013–1178.
20.
Solar O, Irwin A. A conceptual framework for action on the social determinants of health. Social Determinants of Health Discussion Paper 2 (Policy and Practice). 2010.
21.
Kumari M, Badrick E, Chandola T, Adler NE, Epel E, Seeman T, et al. Measures of social position and cortisol secretion in an aging population: findings from the Whitehall II study. Psychosom Med. 2010; 72(1): 27–34. 10.1097/PSY.0b013e3181c85712.
22.
Kumari M, Badrick E, Ferrie J, Perski A, Marmot M, Chandola T. Self-reported sleep duration and sleep disturbance are independently associated with cortisol secretion in the Whitehall II study. J Clin Endocrinol Metab. 2009; 94(12): 4801–4809. 10.1210/jc.2009–0555.
23.
Kumari M, Badrick E, Chandola T, Adam EK, Stafford M, Marmot MG, et al. Cortisol secretion and fatigue: associations in a community based cohort. Psychoneuroendocrinology 2009; 34(10): 1476–1485. 10.1016/j.psyneuen.2009.05.001.
24.
Davis MA, Higgins J, Li Z, Gilbert-Diamond D, Baker ER, Das A, et al. Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ Health 2015; 14: 12. 10.1186/1476–069X-14–12.
25.
Kozul-Horvath CD, Zandbergen F, Jackson BP, Enelow RI, Hamilton JW. Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS One 2012; 7(5): e38249. 10.1371/journal.pone.0038249.
26.
Pilsner JR, Hall MN, Liu X, Ilievski V, Slavkovich V, Levy D, et al. Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS One 2012; 7(5): e37147.
27.
Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, et al. Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect. 2012; 120(7): 1061–1066.
28.
Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenic metabolites during early human development. Toxicological Sci. 1998; 44(2): 185–190. 10.1093/toxsci/44.2.185.
29.
National Research Council (US) Subcommittee on Arsenic in Drinking Water. Arsenic in Drinking Water. Washington (DC): National Academies Press (US); 1999. 6, Biomarkers of Arsenic Exposure. Available online:
https://www.ncbi.nlm.nih.gov/b... (Accessed on 27.10.2016).
30.
Kile Molly L, Hoffman E, Hsueh Y-M, Afroz S, Quamruzzaman Q, Rahman M, et al. Variability in Biomarkers of Arsenic Exposure and Metabolism in Adults over Time. Environ Health Perspectives 2009; 117(3): 455–460. 10.1289/ehp.11251.
31.
Superintendencia de Servicios Sanitarios. Gobierno de Chile. Fiscalización de empresas sanitarias. Calidad del agua potable. 2013. Available online:
http://www.siss.gob.cl/586/w3-... (Accessed on 27.10.2016).
32.
Aardal E, Holm AC. Cortisol in saliva--reference ranges and relation to cortisol in serum. (0939–4974 (Print)),.
33.
Watamura SE, Donzella B, Kertes DA, Gunnar MR. Developmental changes in baseline cortisol activity in early childhood: relations with napping and effortful control. Dev Psychobiol. 2004; 45(3): 125–133. 10.1002/dev.20026.
34.
Cerda-Molina AL, Borráz-León JI, Mayagoitia-Novales L, Gaspar Del Río AT. Reactividad del cortisol y salud mental en adultos expuestos a violencia temprana: revisión sistemática. Revista Panamericana de Salud Pública 2017; 1–9. 10.26633/rpsp.2017.171.
35.
Cordero MI, Moser DA, Manini A, Suardi F, Sancho-Rossignol A, Torrisi R, et al. Effects of interpersonal violence-related post-traumatic stress disorder (PTSD) on mother and child diurnal cortisol rhythm and cortisol reactivity to a laboratory stressor involving separation. Horm Behav. 2017; 90:15–24. 10.1016/j.yhbeh.2017.02.007.
36.
Bair-Merritt MH, Voegtline K, Ghazarian SR, Granger DA, Blair C, Family Life Project I, et al. Maternal intimate partner violence exposure, child cortisol reactivity and child asthma. Child Abuse Negl. 2015; 48: 50–57. 10.1016/j.chiabu.2014.11.003.
37.
Gunnar MR, Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 2002; 27: 199–220.
38.
Howards PP, Schisterman EF, Heagerty PJ. Potential Confounding by Exposure History and Prior Outcomes. Epidemiology 2007; 18(5): 544–551. 10.1097/EDE.0b013e31812001e6.
39.
Chandola T, Rouxel P, Marmot MG, Kumari M. Retirement and Socioeconomic Differences in Diurnal Cortisol: Longitudinal Evidence From a Cohort of British Civil Servants. J Gerontol B Psychol Sci Soc Sci. 2017; 10.1093/geronb/gbx058.
40.
Forclaz MV, Moratto E, Pennisi A, Falco S, Olsen G, Rodriguez P, et al. Salivary and serum cortisol levels in newborn infants. Arch Argent Pediatr. 2017; 115(3): 262–266. 10.5546/aap.2017.eng.262.
41.
Sánchez BN, Budtz-Jørgensen E, Ryan LM, Hu H. Structural Equation Models. J Am Statistical Assoc. 2005; 100(472): 1443–1455. 10.1198/016214505000001005.