RESEARCH PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Hazel, alder, birch, and poplar pollen allergens are a common cause of pollen allergies. In a temperate climate, wind-pollinated plants are characterized by a seasonal pollen release cycle associated with the seasons of the year and weather conditions. Therefore, the aim of the present study was to assess the course of pollen seasons of some allergenic plants and to determine the effect of meteorological factors on the content of pollen grains in the bioaerosol in 2021 in Kielce, Poland.

Material and methods:
In relation to selected meteorological parameters, the length of the total and main pollen season, the sum of daily pollen grain concentrations in the season, the peak pollen concentration, and the number of days with values exceeding the species-specific threshold concentrations, were determined.

Results:
Hazel and alder pollen were the first to appear in the air of Kielce. The longest pollen season was observed for birch, while hazel was characterized by the shortest season. The alder pollen release was intense, with the highest maximum concentration of pollen grains. The study revealed a significant influence of the maximum air temperature on the dynamics of hazel, alder and poplar pollen release. Birch pollen release was significantly correlated with the average air humidity. The concentration of alder and birch pollen grains also depended on rainfall intensity. The wind force had a significant impact on the pollen season of plants.

Conclusions:
There were various relationships between the meteorological factors and the content of pollen grains in the air. The wind speed and temperature had the greatest impact on plant pollen release, with birch and alder being particularly sensitive to weather conditions.

ACKNOWLEDGEMENTS
This work was supported by a research project of the Jan Kochanowski Uniwersity in Kielce, grant No. SUPB.RN.22.133.
REFERENCES (44)
1.
Rapiejko P, Stankiewicz W, Szczygielski K, et al. Threshold pollen count necessary to evoke allergic symptoms. Otolaryngol Pol. 2007; 61(4):591–94. https://doi.org/10.1016/s0030–....
 
2.
Seneta W, Dolatowski J, Zieliński J. Dendrologia. PWN Warszawa, 2021.
 
3.
Rapiejko P, Lipiec A. Pyłek roślin jako aeroalergen. Terapia. 2001; 3: 3–9.
 
4.
Piotrowska-Weryszko K, Weryszko-Chmielewska E, Dąbrowska-Zapart K, et al. Analysis of Corylus pollen season in Poland in 2021. Alergoprofil. 2021; 17(2): 54–59. https://doi.org/10.24292/01.AP....
 
5.
Jacob T, Seutter von Loetzen C, Reuter A, et al. Identification of a natural ligand of the hazel allergen Cor a 1. Sci Rep. 2019; 9(1):8714. https://doi.org/10.1038/s41598....
 
6.
Rapiejko P, Lipiec A. Alergeny pyłku leszczyny. Alergoprofil. 2007; 3(2): 24–29.
 
7.
Roux KH, Teuber SS, Sathe SK. Tree nut allergens. Int Arch Allergy Immunol. 2003; 131(4): 234–244. https://doi.org/10.1159/000072....
 
8.
Mehlenbacher SA, Brown RN, Nouhra ER, et al. A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markers. Genome. 2006; 49(2):122–33. https://doi.org/10.1139/g05–09....
 
9.
Aalberse RC, Akkeerdaas JH, van Ree R. Cross-reactivity of IgE antibodies to allergens. Allergy. 2001; 56(6): 478–490. https://doi.org/10.1034/j.1398....
 
10.
Biedermann T, Winther L, Till SJ, et al. Birch pollen allergy in Europe. Allergy. 2019; 74(7): 1237–1248. https://doi.org/10.1111/all.13....
 
11.
Rapiejko P. Alergeny pyłku olszy. Alergoprofil. 2007; 3(3): 28–33.
 
12.
Rapiejko P, Stankiewicz W, Szczygielski K, et al. Progowe stężenie pyłku roślin niezbędne do wywołania objawów alergicznych. Otolaryngol Pol. 2007; 61(4): 591–594. https://doi.org/10.1016/S0030–....
 
13.
Asam C, Batista AL, Moraes AH, et al. Bet v 1 – a Trojan horse for small ligands boosting allergic sensitization? Clin Exp Allergy. 2014; 44(8): 1083–1093. https://doi.org/10.1111/cea.12....
 
14.
Wölbing F, Kunz J, Kempf WE, et al. The clinical relevance of birch pollen profilin cross-reactivity in sensitized patients. Allergy. 2017; 72(4): 562- 569. https://doi.org/10.1111/all.13....
 
15.
Dyakowska J. Podręcznik palynologii. Metody i problemy. Wyd. Geologiczne, Warszawa, 1959.
 
16.
Rapiejko P. Alergeny pyłku topoli. Alergoprofil. 2008; 4(2): 30–32.
 
17.
Celik G, Mungan D, Pinar M, et al. Poplar pollenrelated allergy in Ankara, Turkey: how important for patients living in a city with high pollen load? Allergy Asthma Proc. 2005; 26(2): 113–119.
 
18.
Weryszko-Chmielewska E. Aerobiologia. Wydawnictwo Akademii Rolniczej w Lublinie, Lublin, 2007: 108–110.
 
19.
Lin RY, Clauss AE, Bennett ES. Hypersensitivity to common tree pollen in New York City patients. Allergy Asthma Proc. 2002; 23(4): 253–258.
 
20.
Guilbert A, Cox B, Bruffaerts N, et al. Relationships between aeroallergen levels and hospital admissions for asthma in the Brussels-Capital Region: a daily time series analysis. Environ Health. 2018; 17(1): 35. https://doi.org/10.1186/s12940....
 
21.
Chłopek K, Malkiewicz M, Weryszko-Chmielewska E, et al. Pyłek topoli w powietrzu wybranych miast Polski w 2014 r. Alergoprofil. 2014; 10(3): 31–35.
 
22.
Zemmer F, Dahl A, Galán C. The duration and severity of the allergenic pollen season in Istanbul, and the role of meteorological factors. Aerobiologia. 2022; 38: 195–215. https://doi.org/10.1007/s10453....
 
23.
Rahman A, Khan MHR, Luo C, et al. Variations in airborne pollen and spores in urban Guangzhou and their relationships with meteorological variables. Heliyon. 2021; 7(11): e08379. https://doi.org/10.1016/j.heli....
 
24.
Kasprzyk I, Uruska A, Szczepanek K, et al. Regional differentiation in the dynamics of the pollen seasons of Alnus, Corylus and Fraxinus in Poland (preliminary results). Aerobiologia. 2004; 20(2): 141–151. https://doi.org/10.1023/B:AERO....
 
25.
Nowosad J. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula. Int J Biometeorol. 2016; 60: 843–855. https://doi.org/10.1007/s00484....
 
26.
Yagami A, Ebisawa M. New Findings, Pathophysiology, and Antigen Analysis in Pollen-Food Allergy Syndrome. Curr Opin Allergy Clin Immunol. 2019; 19(3): 218–223. https://doi.org/10.1097/ACI.00....
 
27.
Emberlin J, Savage M, Jones S. Annual variations in grass pollen seasons in London 1961–1990: trends and forecast models. Clin Exp Allergy. 1993; 23(11): 911–918. https://doi.org/10.1111/j.1365....
 
28.
Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy. www.meteomodel.pl (access: 27.07.2021).
 
29.
Buters JTM, Antunes C, Galveias A, et al. Pollen and spore monitoring in the world. Clin Transl Allergy. 2018; 8: 9. https://doi.org/10.1186/s13601....
 
30.
Camacho IC. Airborne pollen in Funchal city, (Madeira Island, Portugal) – First pollinic calendar and allergic risk assessment. Ann Agric Environ Med. 2015; 22(4): 608–613. https://doi.org/10.5604/123219....
 
31.
Kafashan HA, Khosravi AR, Alyasin S, et al. Airborne Pollens and Their Association with Meteorological Parameters in the Atmosphere of Shiraz, Southwest Iran. Iran J Allergy Asthma Immunol. 2021; 20(3): 294–302. https://doi.org/10.18502/ijaai....
 
32.
Aboulaich N, Achmakh L, Bouziane H, et al. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NWMorocco). Int J Biometeorol. 2013; 57(2): 197–205. https://doi.org/10.1007/s00484....
 
33.
Malkiewicz M, Piotrowska-Weryszko K, Puc M, et al. Alder pollen season in selected cities of Poland in 2020. Alergoprofil. 2020; 16(2): 25–30. https://doi.org/10.24292/01.AP....
 
34.
Rapiejko A, Malkiewicz M, Wolski T, et al. The analysis of alder pollen season in selected cities of Poland in 2021. Alergoprofil. 2021; 17(4), 38–43. https://doi.org/10.24292/01.AP....
 
35.
Stępalska D, Myszkowska D, Piotrowicz K, et al. The phenological phases of flowering and pollen seasons of spring flowering tree taxa against a background of meteorological conditions in Kraków, Poland. Acta Agrobot. 2016; 65(2): 1678. https://doi.org/0.5586/aa.1678.
 
36.
Puc M, Wolski T, Camacho IC, et al. Fluctuation of birch (Betula L.) pollen seasons in Poland. Acta Agrobot. 2015; 68(4): 303–313. https://doi.org/10.5586/aa.201....
 
37.
Malkiewicz M, Lipiec A, Dąbrowska-Zapart K, et al. Birch pollen season in southern Poland in 2017. Alergoprofil, 2017; 13(3): 118–123. https://doi.org/10.24292/01.ap....
 
38.
Rapiejko P. Pyłek roślin jako źródło alergenów. Przegląd Alergiczny. 2004: 7–12.
 
39.
Piotrowska-Weryszko K, Weryszko-Chmielewska E, Dmitruk M, et al. The analysis of Betula pollen season in Poland in 2019. Alergoprofil. 2019; 15(3): 10–15. https://doi.org/10.24292/01.AP....
 
40.
Rapiejko J, Puc M, Malkiewicz M, et al. The analysis of birch pollen season in selected cities of Poland in 2021. Alergoprofil. 2022; 18(1): 29–34. https://doi.org/10.24292/01.AP....
 
41.
Malkiewicz M, Lipiec A, Puc M, et al. Populus pollen in the air of selected Polish cities in 2018. Alergoprofil. 2018; 14(2): 54–58. https://doi.org/10.24292/01.AP....
 
42.
Puc M, Kasprzyk I. The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions. Aerobiologia. 2013; 29(4): 495–511. https://doi.org/10.1007/s10453....
 
43.
Majeed HT, Periago C, Alarcón M, et al. Airborne pollen parameters and their relationship with meteorological variables in NE Iberian Peninsula. Aerobiologia. 2018; 34: 375–388. https://doi.org/10.1007/s10453....
 
44.
Ślusarczyk J, Kopacz-Bednarska A, Posłowska J. Characteristics of ash, maple, yew/ juniper, and willow pollen seasons in the air of Kielce in 2021 in correlation with weather conditions. Alergoprofil. 2021; 17(4): 44–51. https://doi.org/10.24292/01.AP....
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top