BRIEF COMMUNICATION
Identification of Toxoplasma gondii in wild rodents in Poland by molecular and serological techniques
More details
Hide details
1
Medical University of Gdańsk, Poland
2
Institute of Parasitology SAS, Košice, Slovak Republic
3
University of Life Sciences in Lublin, Poland
4
Nottingham University, United Kingdom
5
Warsaw University, Poland
Ann Agric Environ Med. 2024;31(4):626-630
KEYWORDS
TOPICS
ABSTRACT
Rodents are recognized as reservoirs for Toxoplasma gondii, playing a crucial role in maintaining the parasite’s presence in the environment. Biomonitoring was conducted to assess the role of sylvatic rodents in maintaining T. gondii, and to analyse the prevalence and seroprevalence of the parasite in seven wild rodent species. Rodents were collected in an open grassland study site located in northeastern Poland, and dissected. Brain, spleen, blood and serum samples were collected. Molecular (PCR assay, nested-PCR assay) and serological (ELISA and agglutination tests) methods were applied to indicate the best approach for application in the biomonitoring of T. gondii in small mammals. Samples were screened from 68 individuals using PCR assays but no T. gondii DNA were found. The agglutination test showed no signal. Antibodies against T. gondii were found in 5 sera samples out of 56 analysed (seroprevalence = 8.9% [4.4–16.8]). The results confirmed that rodents participate in the life cycle of T. gondii as reservoirs of this parasite in the sylvatic environment. However, for effective bio-monitoring of T. gondii in small mammals, the results suggest a preference for utilizing ELISA tests to detect T. gondii antigens, as opposed to relying solely on molecular methods.
ABBREVIATIONS
Institutional Review Board Statement: This study was carried out in strict accordance with the recommendations in the Guidelines for the Care and Use of Laboratory Animals of the Polish National Ethics Committee for Animal
Experimentation, and according to the Polish national law for field work involving the trapping and culling of wild unprotected vertebrates for scientific purposes (Resolution No. 12/2022 of the Polish National Ethics Committee for Animal Experiments, 11 March 2022). The study was performed according to the ARRIVE guidelines 2.0.
ACKNOWLEDGEMENTS
The authors thank the Universities of Nottingham (UK) and Warsaw, and the Medical University of Gdańsk for financial support, as well as the Masurian
Centre for Biodiversity and Nature Education in Urwitałt, Poland, for hospitability in the field station.
FUNDING
The research was co-funded through the 2018–2019 BiodivERsA joint call for research proposals under the BiodivERsA3 ERA-Net COFUND programme. The funding organisations ANR (France), DFG (Germany), EPA (Ireland), FWO (Belgium), and NCN (Poland). JN, MG and AG were supported by the National Science Centre in Kraków, Poland, under the BiodivERsA3 programme (2019/31/Z/NZ8/04028).
MK was supported by the National Science Centre under the Preludium BIS programme 2020/39/O/NZ6/01777. JMB was supported by the Royal Society, the British Ecological Society and the Grabowski Fund in London, UK.
REFERENCES (52)
1.
Galeh TM, Sarvi S, Montazeri M, et al. Global Status of Toxoplasma gondii Seroprevalence in Rodents: A Systematic Review and Meta-Analysis. Front Vet Sci. 2020;7(461). doi:10.3389/fvets.2020.00461.
2.
Johnson HJ, Koshy AA. Latent Toxoplasmosis Effects on Rodents and Humans: How Much is Real and How Much is Media Hype? Garsin DA, ed. mBio. 2020;11(2). doi:10.1128/mBio.02164-19.
3.
Gennari SM, Ogrzewalska MH, Soares HS, et al. Toxoplasma gondii antibodies in wild rodents and marsupials from the Atlantic Forest, state of São Paulo, Brazil. Revista Brasileira de Parasitologia Veterinária. 2015;24(3):379–382. doi:10.1590/S1984-29612015045.
4.
Tong WH, Pavey C, O’Handley R, Vyas A. Behavioral biology of Toxoplasma gondii infection. Parasit Vectors. 2021;14(1):77. doi:10.1186/s13071-020-04528-x.
6.
de Oliveira PRF, de Melo RPB, de Oliveira UDR, et al. Detection of Toxoplasma gondii oocysts in soil and risk mapping in an island environment in the Northeast of Brazil. Transbound Emerg Dis. 2022;69(6):3457–3467. doi:10.1111/tbed.14705.
7.
Krupińska M, Antolová D, Tołkacz K, et al. Grassland versus forest dwelling rodents as indicators of environmental contamination with the zoonotic nematode Toxocara spp. Sci Rep. 2023;13(1):483. doi:10.1038/s41598-022-23891-6.
8.
Grzybek M, Antolová D, Tołkacz K, et al. Seroprevalence of Toxoplasma gondii among Sylvatic Rodents in Poland. Animals. 2021;11(4):1048. doi:10.3390/ani11041048.
9.
Jittapalapong S, Sarataphan N, Maruyama S, Hugot JP, Morand S, Herbreteau V. Toxoplasmosis in Rodents: Ecological Survey and First Evidences in Thailand. Vector-Borne and Zoonotic Diseases. 2011;11(3):231–237. doi:10.1089/vbz.2009.0238.
10.
Gotteland C, Chaval Y, Villena I, et al. Species or local environment, what determines the infection of rodents by Toxoplasma gondii? Parasitology. 2014;141(2):259–268. doi:10.1017/S0031182013001522.
11.
Afonso E, Thulliez P, Pontier D, Gilot-Fromonte E. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal. Parasitology. 2007;134(14):1963–1971. doi:10.1017/S0031182007003320.
12.
Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol. 2009;35(3):221–270. doi:10.1080/10408410902989837.
13.
Hussain S, Naz F, Jan A, Ullah R, Khan S, Haseeb A, Ahmad IYM. Seroprevalence and risk factors of toxoplasomosis among women in District Chitral, Khyber Pakhtunkhwa, Pakistan. World J Zool. 2016;11:135–140.
14.
Attias M, Teixeira DE, Benchimol M, Vommaro RC, Crepaldi PH, De Souza W. The life-cycle of Toxoplasma gondii reviewed using animations. Parasit Vectors. 2020;13(1):588. doi:10.1186/s13071-020-04445-z.
15.
Gilot-Fromont E, Llu M, Dard ML, et al. The Life Cycle of Toxoplasma gondii in the Natural Environment. In: Toxoplasmosis – Recent Advances. InTech; 2012. doi:10.5772/48233.
16.
Gering E, Laubach ZM, Weber PSD, et al. Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host. Nat Commun. 2021;12(1):3842. doi:10.1038/s41467-021-24092-x.
17.
Gotteland C, Chaval Y, Villena I, et al. Species or local environment, what determines the infection of rodents by Toxoplasma gondii? Parasitology. 2014;141(2):259–26.
18.
Dubey JP. The history and life cycle of Toxoplasma gondii. In: Toxoplasma Gondii. Elsevier; 2020:1–19. doi:10.1016/B978-0-12-815041-2.00001-3.
19.
Waindok P, Özbakış-Beceriklisoy G, Janecek-Erfurth E, et al. Parasites in brains of wild rodents (Arvicolinae and Murinae) in the city of Leipzig, Germany. Int J Parasitol Parasites Wildl. 2019;10:211–217. doi:10.1016/j.ijppaw.2019.09.004.
20.
Lass A, Pietkiewicz H, Modzelewska E, Dumètre A, Szostakowska B, Myjak P. Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. Eur J Clin Microbiol Infect Dis. 2009;28(6):599–605. doi:10.1007/s10096-008-0681-5.
21.
Montoya JG. Laboratory Diagnosis of Toxoplasma gondii Infection and Toxoplasmosis. J Infect Dis. 2002;185(s1):S73–S82. doi:10.1086/338827.
22.
Behnke JM, Bajer A, Harris PD, et al. Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 1. Regional fauna and component community levels. Parasitology. 2008;135(8):985–997. doi:10.1017/S0031182008004484.
23.
Behnke JM, Bajer A, Harris PD, et al. Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 2. The infracommunity level. Parasitology. 2008;135(8):999–1018. doi:10.1017/S0031182008004484.
24.
Grzybek M, Bajer A, Alsarraf M, Behnke JM. Female host sex-biased parasitism with Mastophorus muris in wild bank voles (Myodes glareolus). In: British Society for Parasitology 52nd Annual Spring Meeting; 2014.
25.
Bajer A, Welc-Faleciak R, Bednarska M, et al. Long-term spatiotemporal stability and dynamic changes in the haemoparasite community of bank voles (Myodes glareolus) in NE Poland. Microb Ecol. 2014;68(2):196–211. doi:10.1007/s00248-014-0390-9.
26.
Grzybek M, Bajer A, Bednarska M, et al. Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland. Parasitology. 2015;142(14):1722–1743. doi:10.1017/S0031182015001225.
27.
Tołkacz K, Bednarska M, Alsarraf M, et al. Prevalence, genetic identity and vertical transmission of Babesia microti in three naturally infected species of vole, Microtus spp. (Cricetidae). Parasit Vectors. 2017;10(1):66. doi:10.1186/s13071-017-2007-x.
28.
Tołkacz K, Alsarraf M, Kowalec M, et al. Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasit Vectors. 2018;11(1):491. doi:10.1186/s13071-018-3047-6.
29.
Schwab KJ, McDevitt JJ. Development of a PCR-Enzyme Immunoassay Oligoprobe Detection Method for Toxoplasma gondii Oocysts, Incorporating PCR Controls. Appl Environ Microbiol. 2003;69(10):5819–5825. doi:10.1128/AEM.69.10.5819-5825.2003.
30.
Burg JL, Grover CM, Pouletty P, Boothroyd JC. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol. 1989;27(8):1787–1792. doi:10.1128/jcm.27.8.1787-1792.1989.
31.
Marino AMF, Percipalle M, Giunta RP, et al. Development and validation of a real-time PCR assay for the detection of Toxoplasma gondii DNA in animal and meat samples. J Veter Diagnostic Invest. 2017;29(2):203–207. doi:10.1177/1040638716682808.
32.
Naguleswaran A, Hemphill A, Rajapakse RPVJ, Sager H. Elaboration of a crude antigen ELISA for serodiagnosis of caprine neosporosis: validation of the test by detection of Neospora caninum-specific antibodies in goats from Sri Lanka. Vet Parasitol. 2004;126(3):257–262. doi:10.1016/j.vetpar.2004.08.014.
33.
Grzybek M, Alsarraf M, Tołkacz K, et al. Seroprevalence of TBEV in bank voles from Poland—a long-term approach. Emerg Microbes Infect. 2018;7(1):1–8. doi:10.1038/s41426-018-0149-3.
34.
Zhu C, Cui L, Zhang L. Comparison of a Commercial ELISA with the Modified Agglutination Test for Detection of Toxoplasma gondii Antibodies in Sera of Naturally Infected Dogs and Cats. Iran J Parasitol. 2012;7(3):89–95.
35.
Bellatreche AY, Bouzid R, Blaizot A, et al. Comparison of a Commercial Enzyme-Linked Immunosorbent Assay (ELISA) with the Modified Agglutination Test (MAT) for the Detection of Antibodies against Toxoplasma gondii in a Cohort of Hunting Dogs. Animals. 2022;12(20):2813. doi:10.3390/ani12202813.
36.
Ivovic V, Potusek S, Buzan E. Prevalence and genotype identification of Toxoplasma gondii in suburban rodents collected at waste disposal sites. Parasite. 2019;26:27. doi:10.1051/parasite/2019027.
37.
Homan WL, Vercammen M, De Braekeleer J, Verschueren H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR1Note: Nucleotide sequence data reported in this paper have been submitted to GenBankTM database with the accession nu. Int J Parasitol. 2000;30(1):69–75. doi:10.1016/S0020-7519(99)00170-8.
38.
Liu Q, Wang ZD, Huang SY, Zhu XQ. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors. 2015;8(1):292. doi:10.1186/s13071-015-0902-6.
39.
Galeh TM, Sarvi S, Montazeri M, et al. Global Status of Toxoplasma gondii Seroprevalence in Rodents: A Systematic Review and Meta-Analysis. Front Vet Sci. 2020;7. doi:10.3389/fvets.2020.00461.
40.
Khademvatan S, Foroutan M, Hazrati-Tappeh K, et al. Toxoplasmosis in rodents: A systematic review and meta-analysis in Iran. J Infect Public Health. 2017;10(5):487–493. doi:10.1016/j.jiph.2017.01.021.
41.
Ferguson DJ, Graham DI, Hutchison WM. Pathological changes in the brains of mice infected with Toxoplasma gondii: a histological, immunocytochemical and ultrastructural study. Int J Exp Pathol. 1991;72(4):463–474.
http://www.ncbi.nlm.nih.gov/pu....
42.
Rizwan M, Ali S, Javid A, Rashid MI. Molecular detection of Toxoplasma gondii among commensal rodents from the Sahiwal division, Punjab, Pakistan. Parasitol Res. 2023;122(1):299–306. doi:10.1007/s00436-022-07729-8.
43.
Zou Y, Geng HL, Jia HL, et al. The Detection of Toxoplasma gondii in Wild Rats (Rattus norvegicus) on Mink Farms in Shandong Province, Eastern China. Vector-Borne and Zoonotic Diseases. 2022;22(3):199–204. doi:10.1089/vbz.2021.0087.
44.
Ode S, Jarikre T, Jubril AJ, et al. High prevalence of Toxoplasma gondii in Nigerian wild rats by molecular detection. Vet Parasitol Reg Stud Reports. 2022;35:100776. doi:10.1016/j.vprsr.2022.100776.
45.
Herrmann DC, Maksimov P, Maksimov A, et al. Toxoplasma gondii in foxes and rodents from the German Federal States of Brandenburg and Saxony-Anhalt: Seroprevalence and genotypes. Vet Parasitol. 2012;185(2–4):78–85. doi:10.1016/j.vetpar.2011.10.030.
46.
Rosenthal BM. How has agriculture influenced the geography and genetics of animal parasites? Trends Parasitol. 2009;25(2):67–70. doi:10.1016/j.pt.2008.10.004.
47.
Berenreiterová M, Flegr J, Kuběna AA, Němec P. The Distribution of Toxoplasma gondii Cysts in the Brain of a Mouse with Latent Toxoplasmosis: Implications for the Behavioral Manipulation Hypothesis. Zilberstein D, editor. PLoS One. 2011;6(12):e28925. doi:10.1371/journal.pone.0028925.
48.
Lizana V, Gortázar C, Muniesa A, et al. Human and environmental factors driving Toxoplasma gondii prevalence in wild boar (Sus scrofa). Res Vet Sci. 2021;141:56–62. doi:10.1016/j.rvsc.2021.10.007.
49.
Kijlstra A, Meerburg B, Cornelissen J, De Craeye S, Vereijken P, Jongert E. The role of rodents and shrews in the transmission of Toxoplasma gondii to pigs. Vet Parasitol. 2008;156(3–4):183–190. doi:10.1016/j.vetpar.2008.05.030.
50.
Johnson SK, Johnson PTJ. Toxoplasmosis: Recent Advances in Understanding the Link Between Infection and Host Behavior. Annu Rev Anim Biosci. 2021;9(1):249–264. doi:10.1146/annurev-animal-081720-111125.
51.
Sroka J. Occurrence of Toxoplasma gondii infection among free-living small rodents and insectivores in the Lublin Province – the role of these animals in epidemiology of toxoplasmosis. Med Og Nauk Zdr. 2021;27(4):448–452. doi:10.26444/monz/143316.
52.
Buzan E. Changes in rodent communities as consequence of urbanization and inappropriate waste management. Appl Ecol Environ Res. 2017;15(1):573–588. doi:10.15666/aeer/1501_573588.