REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Although monofloral honeys are regarded as more valuable than multifloral types, they lack a clear uniform definition in European countries concerning the proportions of predominant pollen types. In addition, honey contains various secondary plant metabolites, enzymes and co-enzymes, which provide health-promoting properties; however, it can also accumulate heavy metals and pesticide residues.

Review methods:
A literature review was performed using the databases PubMed, Google Scholar concerning the content of metals in the soil, flower and bee pollen in varietal honey. Literature was collected on the influence of pesticides contained in honey on their impact on the human health. Own research selected three varieties of Polish monofloral honey (linden, black locust, rapeseed), which were analyzed using a spectrometer to determine the concentration Ca, Cu, Fe, K, Mg, Mn, Na, Zn.

Brief description of the state of knowledge:
Literature data indicate that a polluted or treated environment can contribute to the accumulation of inter alia heavy metals and pesticides in pollen, honey, beeswax, and the honeybee itself. Such contamination is influenced by various environmental factors, e.g. contaminants from the flower can be passed to the bee though contact with contaminated pollen and incorporated in honey. However, in the monofloral honeys analysed in this study, there were combinations of health-promoting elements that exert synergistic effects.

Summary:
The results obtained provide new qualitative and quantitative data on the composition and potential contamination of varietal honeys over the past 10 years, a period characterised by legislative changes aimed at reducing pesticide and metal contamination of terrestrial ecosystems.
ACKNOWLEDGEMENTS
Co-financed by the Minister of Science under the "Regional Excellence Initiative" Program for 2024-2027 (RID/SP/0045/2024/01)
REFERENCES (107)
1.
Gamrat R, Puc M, Gałczyńska M, et al. Differences in the pollen content of varieties of polish honey from urban and rural apiaries. Acta Univ Cibinien. Ser E: Food Technol. 2022;26(1):109–122. https://doi.org/10.2478/aucft-....
 
2.
scriche I, Juan-Borrás M, Visquert M, et al. An overview of the challenges when analysing pollen for monofloral honey classification. Food Control. 2023;143(109305):1–11. https://doi.org/10.1016/j.food....
 
3.
Thrasyvoulou A, Tananaki C, Goras G, et al. Legislation of honey criteria and standards. J Apic Res. 2018;57(1):88–96. doi:10.1080/00218839.2017.1411181.
 
4.
Bogdanov S. Pollen: nutrition, functional properties, health. In: Bogdanov S, editor. The bee pollen book. Massachusetts: Bee Product Science; 2016. p. 1–30.
 
5.
Dżugan M, Zaguła G, Wesołowska M, et al. Levels of toxic and essential metals in varietal honeys from Podkarpacie. J Elem. 2017;22(3):1039–1048. doi:10.5601/jelem.2016.21.4.1299.
 
6.
Végh R, Csóka M, Mednyánszky Z, et al. Pesticide residues in bee bread, propolis, beeswax and royal jelly – a review of the literature and dietary risk assessment. Food Chem Toxicol. 2023;176(113806):1–15. doi.org/10.1016/j.fct.2023.113806.
 
7.
Bayir H, Aygun A. Heavy metal in honey bees, honey, and pollen produced in rural and urban areas of Konya province in Turkey. Environ Sci Pollut Res. 2022;29:74569–74578. https://doi.org/10.1007/s11356....
 
8.
Fischer A, Brodziak-Dopierała B, Bem J, et al. Analysis of mercury concentration in honey from the point of view of human body exposure. Biol Trace Elem Res. 2022;200:1095–1103. https://doi.org/10.1007/s12011....
 
9.
Calatayud-Vernich P, Calatayud F, Simó E, et al. Pesticide residues in honey bees, pollen and beeswax: assessing beehive exposure. Environ Pollut. 2018;241:106–114. doi.org/10.1016/j.envpol.2018.05.062.
 
10.
Amulen DR, Spanoghe P, Houbraken M, et al. Environmental contaminants of honeybee products in Uganda detected using LC-MS/MS and GC-ECD. PloS One. 2017;12(6):1–12. doi.org/10.1371/journal.pone.0178546 J.
 
11.
David A, Botías C, Abdul-Sada A, et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ Int. 2016;88:169–178. doi:10.1016/j.envint.2015.12.011.
 
12.
Cappellari A, Malagnini V, Fontana P, et al. Impacts of landscape composition on honey bee pollen contamination by pesticide: a multi-residue analysis. Chemosphere. 2024;349(140829):1–8. https://doi.org/10.1016/j.chem....
 
13.
Shi J, Wang X, Chen Z, et al. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. J Hazard Mater. 2024;469(133892):1–9. doi:10.1016/j.jhazmat.2024.133892.
 
14.
Alkassab AT, Bischoff G, Thorbahn D, et al. Transfer of xenobiotics from contaminated beeswax into different bee matrices under field conditions and the related exposure probability. Chemosphere. 2022;307(135615):1–11. doi:10.1016/j.chemosphere.2022.135615.
 
15.
El-Nahhal Y. Pesticide residues in honey and their potential reproductive toxicity. Sci Total Environ. 2020;741(139953):1–20. https://doi.org/10.1016/j.scit....
 
16.
World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. 2009;978(92): 4 154796 3. ISSN 1684-1042.
 
17.
CR (EU). Commission Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70,16.3.2005.
 
18.
EFSA. (European Food Safety Authority), Carrasco Cabrera L, Di Piazza G, Dujardin B, Medina Pastor P. The 2021 European Union report on pesticide residues in food. EFSA Journal 2023;21(4):7939, 89 pp. doi.org/10.2903/j.efsa.2023.7939. ISSN: 1831-4732© 2023.
 
19.
Scripcǎ LA, Amariei S. The influence of chemical contaminants on the physicochemical properties of unifloral and multifloral honey. Foods. 2021;10(1039):1–8. doi.org/10.3390/foods10051039.
 
20.
Ligor M, Bukowska M, Ratiu I-A, et al. Determination of neonicotinoids in honey samples originated from Poland and other world countries. Molecules. 2020;25(24):5817. https://doi.org/10.3390/molecu....
 
21.
Stevanović N, Idbea W, Bošković J, et al. Pesticide residues in different honey types and public health risk assessment. Acta Vet Brno. 2024;93(1):105–114. doi:10.2754/avb202493010105.
 
22.
Saarinen K, Jantunen J, Haahtela T. Birch pollen honey for birch pollen allergy – a randomized controlled pilot study. Int Arch Allergy Immunol. 2011;155(2):160–166. doi:10.1159/000319821.
 
23.
Bauer L, Kohlich A, Hirschwehr R, et al. Food allergy to honey: Pollen or bee products? Characterization of allergenic proteins in honey by means of immunoblotting. J Allergy Clin Immunol. 1996; 97(1):65–73. doi:10.1016/s0091-6749(96)70284-1.
 
24.
Bohle B. The impact of pollen-related food allergens on pollen allergy. Allergy. 2007; 62(1):3–10. doi:10.1111/j.1398-9995.2006.01258.x.
 
25.
CR (EU). Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.
 
26.
EFSA. (European Food Safety Authority), Craig PS, Dujardin B, Hart A, et al. Scientific report on cumulative dietary risk characterisation of pesticides that have acute effects on the nervous system. EFSA J. 2020;18(4):6087, 79 pp. doi.org/10.2903/j.efsa.2020.6087.
 
27.
EFSA. (European Food Safety Authority), Craig PS, Dujardin B, Hart A, et al. Scientific report on the cumulative dietary risk characterisation of pesticides that have protected effects on the thyroid. EFSA J. 2020;18(4):6088, 71 pp. doi.org/10.2903/j.efsa.2020.6088.
 
28.
European Commision. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC.
 
29.
European Commision. Council Regulation (EC) No 1804/1999 of 19 July 1999 supplementing Regulation (EEC) No 2092/91 on organic production of agricultural products and indications referring there to on agricultural products and foodstuffs to include livestock production. Official J. 1999;222(24):08.
 
30.
Panseri S, Bonerba E, Nobile M, et al. Pesticides and environmental contaminants in organic honeys according to their different productive areas toward food safety protection. Foods. 2020;9(12):1863. doi.org/10.3390/foods9121863.
 
31.
Witkowski Z. Ochrona prawna pszczół w Polsce. Bee & Honey. 2018:1–277. ISBN: 978-83-947516-5.
 
32.
Loppi S, Corsini A, Paoli L. Estimating environmental contamination and element deposition at an urban area of central Italy. Urban Sci. 2019;3(76):1–9. https://doi.org/10.3390/urbans....
 
33.
Uchimiya M, Bannon D, Nakanishi H, et al. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J Agric Food Chem. 2020;68(46):12856–12869. doi:10.1021/acs.jafc.0c00183.
 
34.
Vergun O, Grygorieva O, Lidiková J, et al. Nutritional composition of Phacelia tanacetifolia Benth. bee pollen and inflorescences. Agrobiodivers Improv Nutr, Health Life Qual. 2023;7(1). https://agrobiodiversity.uniag....
 
35.
Klym O, Stadnytska O. Heavy metals in the dandelion and apple tree pollen from the different terrestrial ecosystems of the Carpathian region. Acta Sci Pol Zootechnica. 2019;18(3):15–20. https://doi.org/10.21005/asp.2....
 
36.
Kostić AŽ, Pešić MB, Mosić MD, et al. Mineral content of bee pollen from Serbia. Arh Hig Rada Toksikol. 2015;66:251–258. https://doi.org/10.1515/aiht-2....
 
37.
Praus L, Urbanová S, Száková J. Honey bees and associated matrices as biomonitors of soil trace elements: assessment of their sensitivity in a regional rural environment. Environ Toxicol Chem. 2023;43(2):288–298. https://doi.org/10.1002/etc.57....
 
38.
Atanasov AZ, Hristakov IS, Kuncheva GS, et al. Assessment of heavy metals in soil, oilseed rape (Brassica napus L.) and honey. Plant Soil Environ. 2023;69:400–407. https://doi.org/10.17221/265/2....
 
39.
Olchowik J, Jankowski P, Suchocka M, et al. The impact of anthropogenic transformation of urban soils on ectomycorrhizal fungal communities associated with silver birch (Betula pendula Roth.) growth in natural versus urban soils. Sci Rep. 2023;13(21268):1–15. https://doi.org/10.1038/s41598....
 
40.
Rolka E. The yields of selected crops on soils contaminated by cadmium and supplied neutralizing substances. Zesz Probl Postęp Nauk Rol. 2014;576:99–109.
 
41.
Domańska J, Leszczyńska D, Badora A. The possibilities of using common buckwheat in phytoremediation of mineral and organic soils contaminated with Cd or Pb. Agriculture. 2021;11(562):1–11. https://doi.org/10.3390/agricu....
 
42.
Kostopoulou P, Parissi ZM, Abraham EM, et al. Effect of selenium on mineral content and nutritive value of Melilotus officinalis L. J Plant Nutr. 2015;38(12):1849–1861. doi:10.1080/01904167.2015.1043376.
 
43.
Nogues I, Passatore L, Bustamante MÁ, et al. Cultivation of Melilotus officinalis as a source of bioactive compounds in association with soil recovery practices. Front Plant Sci. 2023;14. https://doi.org/10.3389/fpls.2....
 
44.
Steliga T, Kluk D. Assessment of the suitability of Melilotus officinalis for phytoremediation of soil contaminated with petroleum hydrocarbons (TPH and PAH), Zn, Pb and Cd based on toxicological tests. Toxics. 2021;9(7):1–29. https://doi.org/10.3390/toxics....
 
45.
Rusu M, Cara IG, Filip M, et al. Transfer of heavy metals in soil in-plum cultivation: a field study in Adamachi Iasi, Romania. J Appl Life Sci Environ. 2023;56(1):59–74. https://doi.org/10.46909/alse-....
 
46.
Angelova VRA, Ivanova RI, Todorov JM, et al. Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. J Environ Prot Ecol. 2017;18(2):468–478.
 
47.
Cao X, Wang X, Tong W, et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ Pollut. 2019;252:733–741. https://doi.org/10.1016/j.envp....
 
48.
Srodek D, Rahmonov O. The properties of black locust Robinia pseudoacacia L. to selectively accumulate chemical elements from soils of ecologically transformed areas. Forests. 2022;13(7). https://doi.org/10.3390/f13010....
 
49.
Uršulin-Trstenjak N, Puntarić D, Levanić D, et al. Pollen, physicochemical, and mineral analysis of Croatian acacia honey samples: applicability for identification of botanical and geographical origin. J Food Qual. 2017;11:1–11. https://doi.org/10.1155/2017/8....
 
50.
Barbeş L, Bărbulescu A, Stanciu G. Statistical analysis of mineral elements content in different melliferous plants from the Dobrogea region, România. Rom. Rep Phys. 2020;72:705.
 
51.
Brodziak-Dopierała B, Mendak-Oleś P, Fischer A. Occurrence of mercury in various types of honey. Med Srod. 2020;23(1–4):39–43. https://doi.org/10.26444/ms/13....
 
52.
Pietrelli L, Menegoni P, Papetti P. Bioaccumulation of heavy metals by herbaceous species grown in urban and rural sites. Water Air Soil Pollut. 2022;233(4). doi:10.1007/s11270-022-05577-x.
 
53.
Murashova EA, Tunikov GM, Nefedova SA, et al. Major factors determining accumulation of toxic elements by bees and honey products. 2020 Int Transact J Eng Manage Appl Sci Technol. 2020;11(3):1–14. doi:10.14456/ITJEMAST.2020.54 1.
 
54.
Tomczyk M, Zaguła G, Kaczmarski M, et al. The negligible effect of toxic metal accumulation in the flowers of melliferous plants on the mineral composition of monofloral honeys. Agriculture. 2023;13(2):273. https://doi.org/10.3390/agricu....
 
55.
Di Bella G, LoTurco V, Potortì AG, et al. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J Food Compos Anal. 2015;44:25–35. https://doi.org/10.1016/j.jfca....
 
56.
Meli MA, Fagiolino I, Desideri D, et al. Essential and toxic elements in honeys consumed in Italy. J Toxicol Environ Health Crit. 2018:1–12. https://doi.org/10.1080/152873....
 
57.
Squadrone S, Brizio P, Stella, et al. Trace and rare earth elements in monofloral and multifloral honeys from Northwestern Italy; a first attempt of characterization by a multielemental profile. J Trace Elem Med Biol. 2020;126556. doi:10.1016/j.jtemb.2020.126556.
 
58.
Pavlin A, Kočar D, Imperl J, et al. Honey origin authentication via mineral profiling combined with chemometric approaches. Foods. 2023;12(15):2826. https://doi.org/10.3390/foods1....
 
59.
Czipa N, Andrási D, Kovács B. Determination of essential and toxic elements in Hungarian honeys. Food Chem. 2015;175:536–542. doi:10.1016/j.foodchem.2014.12.018.
 
60.
Jovetić M, Trifković J, Stanković D, et al. Mineral content as a tool for the assessment of honey authenticity. J AOAC Int. 2017;100(4):862–870. https://doi.org/10.5740/jaoaci....
 
61.
Kędzierska-Matysek M, Florek M, Wolanciuk A, et al. Concentration of minerals in nectar honeys from direct sale and retail in Poland. Biol Trace Elem Res. 2018;186:579–588. https://doi.org/10.1007/s12011....
 
62.
Kováčik J, Grúz J, Biba O, et al. Content of metals and metabolites in honey originated from the vicinity of industrial town Košice (eastern Slovakia). Environ Sci Pollut Res. 2015;23(5):4531–4540. doi:10.1007/s11356-015-5627-8.
 
63.
Krakowska A, Muszyńska B, Reczyński W, et al. Trace metal analyses in honey samples from selected countries. A potential use in bio-monitoring. Int J Environ Anal Chem. 2015;95:855–882. http://dx.doi.org/10.1080/0306....
 
64.
Labsvards KD, Rudovica V, Borisova A, et al. Multi-element profile characterization of monofloral and polyfloral honey from Latvia. Foods. 2023;12(4091). https://doi.org/10.3390/foods1....
 
65.
Lovaković TB, Lazarus M, Brčić Karačonji I, et al. Multi-elemental composition and antioxidant properties of strawberry tree (Arbutus unedo L.) honey from the coastal region of Croatia: risk-benefit analysis. J Trace Elem Med Biol. 2018;45:85–92. https://doi.org/10.1016/j.jtem....
 
66.
Mračević SD, Krstić M, Lolić A, et al. Comparative study of the chemical composition and biological potential of honey fromdifferent regions of Serbia. Microchem J. 2020;152(104420). https://doi.org/10.1016/j.micr....
 
67.
Sager M. The honey as a bioindicator of the environment. Ecol Chem Eng S. 2017;24(4):583–594. doi:10.1515/eces-2017-0038.
 
68.
Sajtos Z, Herman P, Harangi S, et al. Elemental analysis of Hungarian honey samples and bee products by MP-AES method. Microchem J. 2019;103968. https://doi.org/10.1016/j.micr....
 
69.
Stihi C, Chelarescu ED, Duliu OG, et al. Characterization of Romanian honey using physico-chemical parameters and the elemental content determined by analytical techniques. Rom Rep Phys. 2016;68(1):362–369. http://www.rrp.infim.ro/2016_6....
 
70.
Voica C, Iordache AM, Ionete RE. Multielemental characterisation of honey using inductively coupled plasma-mass spectrometry (ICP-MS) fused with chemometrics. J Mass Spectrom. 2020;e4512. https://doi.org/10.1002/jms.45....
 
71.
Winiarska-Mieczan A, Wargocka B, Jachimowicz K, et al. Evaluation of consumer safety of Polish honey – the content of Cd and Pb in multifloral, monofloral and honeydew honeys. Biol Trace Elem Res. 2021;19:1–14. https://doi.org/10.1007/s12011....
 
72.
Bayram NN, Canli D, Gercek YC, et al. Macronutrient and micronutrient levels and phenolic compound characteristics of monofloral honey samples. J Food Nutr Res. 2020;59:311–322.
 
73.
Bilandžić N. Sedak M, Đokić M, et al. Element content in ten Croatian honey types from different geographical regions during three seasons. J Food Compos Anal. 2019;84(103305). https://doi.org/10.1016/j.jfca....
 
74.
Ciobanu O, Rădulescu H. Results concerning the content of heavy metals in linden tree and mixed flower honey, in Timiş County. Res J Agric Sci. 2018;50(1):16–20.
 
75.
Lasić D, Bubalo D, Bošnir J, et al. Influence of the botanical and geographical origin on the mineral composition of honey. Agric Conspec Sci. 2018;83(4):335–343.
 
76.
Oroian M, Amariei S, Leahu A, et al. Multi-element composition of honey as a suiTab. tool for its authenticity analysis. Pol J Food Nutr Sci. 2015;65(2):93–100. doi:10.1515/pjfns-2015-0021.
 
77.
Oroian M, Prisacaru A, Hretcanu EC, et al. Heavy metals profile in honey as a potential indicator of botanical and geographical origin. Int J Food Prop. 2016;19(8):1825–1836. https://doi.org/10.1080/109429....
 
78.
Orobchenko OL, Paliy AP, Palii AP, et al. Content of inorganic elements in honey and imago samples from different regions of Ukraine. Ukr J Ecol. 2021;11(3):188–198. doi:10.15421/2021_162.
 
79.
Pehlivan T, Gül A. Determination of heavy metals contents of some monofloral honey produced in Turkey. J Appl Pharmac Sci. 2015;5:042–045.
 
80.
Purcarea C, Dżugan M, Wesolowska M, et al. A comparative study of metal content in selected Polish and Romanian honey samples. Rev Chim Bucharest. 2017;68(6):1163–1169. doi:10.37358/RC.17.6.5634.
 
81.
Spirić D, Ćirić J, Đorđević V, et al. Toxic and essential element concentrations in different honey types. Int J Environ Anal Chem. 2019:1–12. https://doi.org/10.1080/030673....
 
82.
Tarapatskyy M, Sowa P, Zaguła G, et al. Assessment of the botanical origin of polish honeys based on physicochemical properties and bioactive components with chemometric analysis. Molecules. 2021;26(4801). https://doi.org/10.3390/molecu....
 
83.
Ćirić J, Đorđević V, Trbović D, et al. Risk assessment of toxic elements in acacia honey. Sci J Meat Technol Quot. 2020;61(1):70–74. https://doi.org/10.18485/meatt....
 
84.
Güldaş M. Investigation of honey types (Chaste Berry, Chestnut, Lavender, Jerusalem Thorn, Acacia and Sunflower) for specific macro and micro elements with heavy metal pollution. U Bee J. 2023;23(1):23–36. doi:10.31467/uluaricilik.1191584.
 
85.
Kaygusuz H, Tezcan F, Erim BF, et al. Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT – Food Sci Technol. 2016;68:273–279. doi:10.1016/j.lwt.2015.12.005.
 
86.
Meli MA, Desideri D, Roselli C, et al. Essential and toxic elements in honeys from a region of central Italy. J Toxicol Environ Health A Crit. 2015;78(10):617–627. doi:10.1080/15287394.2014.1022.
 
87.
Sakač MB, Jovanov PT, Marić AZ, et al. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2018;276:15–21. doi:10.1016/j.foodchem.2018.09.149.
 
88.
Tanković S, Jelušić V, Bilandžić N, et al. Concentrations of heavy metals and elements in different types of honey from Bosnia and Herzegovina. Vet Stanica. 2017;48(1):1–12. https://hrcak.srce.hr/221482.
 
89.
Sitarz-Palczak E, Kalembkiewicz J, Galas D. Evaluation of the content of selected heavy metals in samples of Polish honeys. J Ecol Eng. 2015;16:1–20. https://doi.org/10.12911/22998....
 
90.
Di Rosa AR, Leone F, Cheli F, et al. Novel approach for the characterisation of Sicilian honeys based on the correlation of physico-chemical parameters and artificial senses. Ital J Anim Sci. 2018;18(1);389–397. doi:10.1080/1828051x.2018.1533.
 
91.
Döker S. Exploiting aerosol dilution for the determination of ultratrace elements in honey by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS) without thermal digestion. Anal Methods. 2017;9(11):1710–1717. doi:10.1039/c6ay03140d.
 
92.
Sedláčková VH, Grygorieva O, Fatrcová Šramková K, et al. The chemical composition of pollen, staminate catkins, and honey of Castanea sativa Mill. J Food Sci. 2021;15:433–444. https://doi.org/10.5219/1627.
 
93.
Atanassova J, Pavlova D, Lazarova M, et al. Characteristics of honey from serpentine area in the eastern Rhodopes Mt, Bulgaria. Biol Trace Elem Res. 2016;173(1):247–258. doi:10.1007/s12011-015-0616-9.
 
94.
Bilandžić N, Tlak-Gajger I, Čalopek B, et al. Content of heavy metals and trace elements in different types of honey from Dubrovnik County. J Vet Stan. 2015;46:359–368.
 
95.
Bilandžić N, Tlak-Gajger I, Kosanović M, et al. Essential and toxic element concentrations in monofloral honeys from southern Croatia. Food Chem. 2017;234:245–253. https://doi.org/10.1016/j.food....
 
96.
Baloš MŽ, Mihaljev Ž, Popov N, et al. Toxic elements in Serbian sunflower honey originating from various regions. Biotechnol Anim Husb. 2021;37(2):149–160. https://doi.org/10.2298/BAH210....
 
97.
Ceylan DA, Uslu N, Gül A, et al. Effect of honey types on physico-chemical properties, electrical conductivity and mineral contents of honeys. J Agroaliment Processes Technol. 2019;25(1):31–36. http://journal-of-agroalimenta....
 
98.
Karabagias IK, Louppis AP, Kontakos S, et al. Characterization and geographical discrimination of Greek pine and thyme honeys based on their mineral content, using chemometrics. Eur Food Res Technol. 2017;243(1):101–113. https://doi.org/10.1007/s00217....
 
99.
Karabagias IK, Louppis AP, Kontakos S, et al. Characterization and botanical differentiation of monofloral and multifloral honeys produced in Cyprus, Greece, and Egypt using physicochemical parameter analysis and mineral content in conjunction with supervised statistical techniques. J Anal Methods Chem. 2018;3:1–10. doi:10.1155/2018/7698254.
 
100.
Louppis AP, Karabagias IK, Kontakos S, et al. Botanical discrimination of Greek unifloral honeys based on mineral content in combination with physicochemical parameter analysis, using a validated chemometric approach. Microchem J. 2017;135:180–189. https://doi.org/10.1016/j.micr....
 
101.
Kolayli S, Can Z, Çakir HE, et al. An investigation on Trakya region Oak (Quercus spp.) honeys of Turkey: their physico-chemical, antioxidant and phenolic compounds properties. Turk J Biochem. 2018;43(4):362–374. https://doi.org/10.1515/tjb-20....
 
102.
Dżugan M, Ruszel A, Tomczyk M. Quality of imported honeys obtainable on the market in the Podkarpacie region. Nauka Technol Jakość. 2018;25(117):127–139. doi:10.15193/zntj/2018/117/264.
 
103.
Denisow B, Weryszko-Chmielewska E. Pollen grains as airborne allergenic particles. Acta Agrobot. 2015;68(4):281–284. https://doi.org/10.5586/aa.201....
 
104.
Gałczyńska M, Gamrat R, Bosiacki M, et al. Micro- and macroelements in honey and atmospheric pollution (NW and Central Poland). Resources. 2021;10(8):1–22. doi:10.3390/resources10080086.
 
105.
Wąsowska J, Janus P, Wąsowski J, et al. The right nutrition of healthy pregnant women as a mean to satisfy the need for personal and social safety. Kultura Bezpieczeństwa. Nauka–Praktyka–Refleksje. 2015;18:227–245.
 
106.
DzU. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 13 października 2023 r. zmieniające rozporządzenie w sprawie znakowania poszczególnych rodzajów środków spożywczych (DzU 2023 r., poz. 2233).
 
107.
Tasić A, Pavlović I, Knudsen Š, et al. Pesticides and environmental pollutants in organic honeys according to their diversity of production areas in order to protect human health. Ecologica. 2023;30(110):217–223. doi:10.18485/ecologica.2023.30.110.7.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top