RESEARCH PAPER
Gut microbiome as a biomarker of cardiometabolic disorders
 
More details
Hide details
1
Division of Cardiology with Cardiac Intensive Care Unit, Cardinal Stefan Wyszyński Hospital, Lublin, Poland
 
2
Pope John Paul II State School of Higher Education, Biała Podlaska, Poland
 
3
Chair and Department of Medical Microbiology, Medical University, Lublin, Poland; Division of Gastroenterology, Cardinal Stefan Wyszyński Hospital, Lublin, Poland
 
4
Genomic Laboratory, DNA Research Centre, Poznań, Poland
 
5
Genomic Laboratory, DNA Research Centre, Poznań, Poland; Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
 
 
Corresponding author
Anna Gózd-Barszczewska   

Division of Cardiology with the Cardiac Intensive Care Unit, The Cardinal Stefan Wyszyński Hospital in Lublin, Poland, Al. Kraśnicka 100, 20-718 Lublin, Poland
 
 
Ann Agric Environ Med. 2017;24(3):416-422
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Cardiovascular diseases are the leading cause of death in Europe and worldwide. One of the most important risk factors for atherosclerosis are lipid metabolism disorders, in particular hipercholesterolaemia. The aim of the study was to determine the correlation between gut microbiota composition and atherosclerosis risk factors, so in order that it might be used as a biomarker for coronary artery disease diagnosis.

Material and methods:
The study involved middle-aged men in eastern Poland with central obesity (n=20), subjects with atherosclerosis (n=15) and those with no cardiovascular diseases (n=5). The gut microbiota composition was determined using tag-encoded 16S rRNA gene using Illuminal MiSeq. Data were analyzed with the use of t-test.

Results:
Firmicutes (49.26%) and Bacteroidetes (44.46%) were the dominant Phyla in the middle-aged men in eastern Poland. Subjects with improper levels of total cholesterol were enriched in Prevotella (p=0.03) and decreased level of Clostridium (p=0.02). They also showed a falling tendency in Faecalibacterium (p=0.07). An upward trend was observed in Prevotella (p=0.07) in subjects with improper LDL-C values.

Conclusions:
The study showed that intestinal microbiome is likely to play a role in the pathogenesis of atherosclerosis through its role in lipid metabolism. Bacterial genera of particular importance were Prevotella, Bacteroides, Clostridium, Faecalibacterium. However, further studies involving larger groups of subjects are required to confirm these observations.

 
REFERENCES (50)
1.
Urząd Statystyczny w Lublinie: Ludność – dane wojewódzkie. Retrieved from: http://lublin.stat.gov.pl/dane.... [Accessed 18 April 2017].
 
2.
Lubelski Urząd Wojewódzki w Lublinie: Stan zdrowia ludności – II rozdział Informatora Statystycznego Ochrony Zdrowia Województwa Lubelskiego za rok 2013. Retrieved from: www.lublin.uw.gov.pl/dzialalnosc-kontr/stan-zdrowotny-ludności-ii-rozdział-informatora-statystycznego-ochrony-zdrowia. [Accessed 18 April 2017].
 
3.
Kennel WB, Dawber TR, Kagan A, Rvotskie N, Stokes J 3 rd . Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study. Ann Intern Med. 1961; 55: 33–50.
 
4.
Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364 (9438): 937–952.
 
5.
Kozioł-Montewka M, Pańczuk A, Tokarska-Rodak M, et al. Current infectious threats associated with the development of civilization and progress in medicine – methods of prevention and education. Health Problems of Civilization. 2015; 1 (8): 6–14.
 
6.
Weiner MP, Kubajka M. The importance of metagenomics research in human ecological niches and their role in the diagnosis of noninfectious diseases. Health Problems of Civilization. 2015; 2 (9): 43–49.
 
7.
Bocci V. The neglected organ: bacterial flora has a crucial immuno -stimulatory role. Perspect Biol Med. 1992; 35(2): 251–260.
 
8.
Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010; 8(4): 435–454. doi: 10.1586/ero.10.14.
 
9.
Sekirov I, Russell SL, Antunes LC, Finlany BB. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3): 859–904. doi: 10.11.52/physrev.00045.2009.
 
10.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006; 444(7122): 1022–3.
 
11.
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457(7228): 480–484.
 
12.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027–1031.
 
13.
Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci USA. 2012; 109(2): 594–599. doi: 10.1073/pnas.1116053109.
 
14.
Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. USA. 2007; 104(34): 13780–13785. doi: 10.1073/pnas.0706625104.
 
15.
Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011; 7(10): 569–578. doi: 10.1038/nrrheum.2011.121.
 
16.
Wu X, He B, Liu J, Feng H, Ma Y, Li D, et al. Molecular Insights into Gut Microbiota in Rheumatoid Arthritis. Int J Mol Sci. 2016; 17(3): 431. doi: 10.3390/ijms17030431.
 
17.
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60. doi: 10.1038/nature11450.
 
18.
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99–103. doi: 10.1038/nature12198.
 
19.
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207–214. doi: 10.1038/nature11234.
 
20.
Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012; 3: 1245. doi: 10.1038/ncomms2266.
 
21.
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19: 576–585. doi.10.1038/nm.3145.
 
22.
Wang Z, Klipfell E, Bennett B, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57–63. doi: 10.1038/nature09922.
 
23.
World Health Organization: Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995; 854: 1–452. Retrieved from: http://apps.who.int/iris/bitst.... [Accessed 25 September 2016].
 
24.
Alberti G, Zimmet P, Shaw J. Metabolic syndrome – a new world – wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006; 23: 469–480.
 
25.
Zdrojewski T, Solnica B, Cybulska B, Bandosz P, Rutkowski M, Stokwiszewski J, et al. Prevalence of lipid abnormalities in Poland. The NATPOL 2011 survey. Kardiol Pol. 2016; 74: 213–223.
 
26.
Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016; 253: 281–344.
 
27.
Eckburg BP, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635–1638.
 
28.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6): 499–502.
 
29.
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014; 30(5): 614–620, 2014. doi: 10.1093/bioinformatics/btt593.
 
30.
FASTQ/A short-reads pre-processing tools. Retrieved from: http://hannonlab.cshl.edu/fast... (version 3.3.2). [Accessed 15 July 2016].
 
31.
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10(10): 996–998. doi:10.1038/nmeth.2604.
 
32.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26(19): 2460–2461. doi: 10.1093/bioinformatics/btq461.
 
33.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7(5): 335–336. doi: 10.1038/nmeth.f.303.
 
34.
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012; 6(3): 610–618. doi: 10.1038/ismej.2011.139.
 
35.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2008. ISBN 3-900051-07-0, Retieved from: http://www.R-project.org. (version 0.0.14). [Accessed 17.07.2016].
 
36.
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011; 473 (7346): 174–180. doi: 10.1038/nature09944. Epub 2011 Apr 20.
 
37.
Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995; 91(9): 2488–2496.
 
38.
Zdrojewski T, Jankowski P, Bandosz P, Bartuś S, Chwojnicki K, Drygas W, et al. Nowa wersja systemu oceny ryzyka sercowo-naczyniowego i tablic SCORE dla populacji Polski. Kardiol Pol. 2015; 73: 958–961.
 
39.
Warrier M, Shih D, Burrows A, Ferguson D, Gromovsky AD, Brown AL, et al. The TMAO-Generating Enzyme Flavin Monooxygenase 3 is a Central Regulator of Cholesterol Balance. Cell Rep. 2015; 10(3): 326–338. doi: 10.1016/j.celrep.2014.12.036.
 
40.
Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. Microbial Enterotypes, Inferred by the Prevotella-to-Bacteroides Ratio, Remained Stable during a 6-Month Randomized Controlled Diet Intervention with the New Nordic Diet. Appl Environ Microbiol. 2014; 80(3): 1142–1149. doi: 10.1128/AEM.03549-13.
 
41.
Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013; 368(17): 1575–1584. doi: 10.1056/NEJMoa1109400.
 
42.
Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016; 252: 207–274. doi: 10.1093/eurheartjehw106.
 
43.
Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011; 17(12): 1519–1528. doi: 10.3748//wjg.v17.i12.1519.
 
44.
Alvaro A, Solà R, Rosales R, Ribalta J, Anguera A, Masana L, et al. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life. 2008; 60(11): 757–764. doi: 10.1002/iub.110.
 
45.
Dethlefsen L, Huse S, Sogin ML, Relman DA. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008; 6(11): e280. doi: 10.1371/journal.pbio.0060280.
 
46.
Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009; 11(10): 2574–2584. doi: 10.1111/j.1462–2920.2009.01982.x.
 
47.
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489(7415): 220–230. doi: 10.1038/nature11550.
 
48.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59–65. doi: 10.1038/nature08821.
 
49.
Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep. 2013; 15(8): 337. doi: 10.1007/s11894-013-0337-1.
 
50.
Vinje S, Stroes E, Nieuwdorp M, Hazel SL. The gut microbiome as a novel cardio-metabolic Ditarget: the time has come. Eur Heart J. 2014; 35(14): 883–887. doi: 10.1093/eurheartj/eht467.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top