RESEARCH PAPER
Forecasting of the selected features of Poaceae (R. Br.) Barnh., Artemisia L. and Ambrosia L. pollen season in Szczecin, north-western Poland, using Gumbel’s distribution
 
More details
Hide details
1
Department of Botany and Nature Conservation, University of Szczecin, Szczecin, Poland
 
2
Physical Oceanography Laboratory, University of Szczecin, Szczecin, Poland
 
 
Corresponding author
Małgorzata Puc   

Department of Botany and Nature Conservation, University of Szczecin, Szczecin, Poland
 
 
Ann Agric Environ Med. 2013;20(1):36-47
 
KEYWORDS
ABSTRACT
Introduction and objectives:
The allergenic pollen content of the atmosphere varies according to climate, biogeography and vegetation. Minimisation of the pollen allergy symptoms is related to the possibility of avoidance of large doses of the allergen. Measurements performed in Szczecin over a period of 13 years (2000-2012 inclusive) permitted prediction of theoretical maximum concentrations of pollen grains and their probability for the pollen season of Poaceae, Artemisia and Ambrosia. Moreover, the probabilities were determined of a given date as the beginning of the pollen season, the date of the maximum pollen count, Seasonal Pollen Index value and the number of days with pollen count above threshold values.

Material and Methods:
Aerobiological monitoring was conducted using a Hirst volumetric trap (Lanzoni VPPS). Linear trend with determination coefficient (R2) was calculated. Model for long-term forecasting was performed by the method based on Gumbel’s distribution.

Results:
A statistically significant negative correlation was determined between the duration of pollen season of Poaceae and Artemisia and the Seasonal Pollen Index value. Seasonal, total pollen counts of Artemisia and Ambrosia showed a strong and statistically significant decreasing tendency. On the basis of Gumbel’s distribution, a model was proposed for Szczecin, allowing prediction of the probabilities of the maximum pollen count values that can appear once in e.g. 5, 10 or 100 years.

Conclusions:
Short pollen seasons are characterised by a higher intensity of pollination than long ones. Prediction of the maximum pollen count values, dates of the pollen season beginning, and the number of days with pollen count above the threshold, on the basis of Gumbel’s distribution, is expected to lead to improvement in the prophylaxis and therapy of persons allergic to pollen.
REFERENCES (63)
1.
D’Amato G, Spieksma FT. Allergenic pollen in Europe. Grana. 2004; 30: 60-70.
 
2.
Laaidi M, Thibaudon M, Besancenot JP. Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). Int J Biometeorol. 2003; 48(2): 65-73.
 
3.
Kasprzyk I. Non-native Ambrosia pollen in the atmosphere of Rzeszów (SE Poland); evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol. 2008; 52: 341-351.
 
4.
Leuschner RM, Boehm G, Mari R. L’ambroisie progresse-t-elle? Bull Soc Bot Fr. 1990; 137: 144-145.
 
5.
Stach A, Silny W. Pyłek dalekiego transportu w aeroplanktonie Poznania w latach 1995–1997 (Wybrane taksony alergogenne). Bibliotheca Fragm Agron. 1999; 6: 209-216.
 
6.
Smith M, Skjøth CA, Myszkowska D, Uruska A, Puc M, Stach A, Balwierz Z, Chłopek K, Piotrowska K, Kasprzyk I, Brandt J. 2008. Long-rage transport of Ambrosia pollen to Poland. Agric Forest Meteorol. 2008; 148: 1402-1411.
 
7.
Reindl J, Anliker MD, Karamloo F, Vieths S, Wüthrich B. Allergy caused by ingestion of zucchini (Cucurbita pepo): Characterization of allergens and crossreactivity to pollen and other foods. J Allergy Clin Immunol. 2000; 106: 379-385.
 
8.
Andersson K, Lindholm J. Characteristic and immunobiology of grass pollen allergens. Int Arch Allergy Immunol. 2003; 130: 87-107.
 
9.
Asero R, Mistrello G, Roncarolo D, D’Amato G, Zanoni D, Barocci F, Caldironi G. Detection of clinical markers of sensitisation to profilin in patients allergic to plant-derived foods. J Allergy Clin Immunol. 2003; 112: 417-423.
 
10.
Mandrioli P, Cecco M, Andina G. Ragweed pollen: The aeroallergen is spreading in Italy. Aerobiologia. 1998; 14: 13-20.
 
11.
Jaëger S. Ragweed (Ambrosia) sensitisation rates correlate with the amount of inhaled airborne pollen. A 14-year study in Vienna, Austria. Aerobiologia. 2000; 16(1): 149-153.
 
12.
White JF, Bernstein DI, Key pollen allergens in North America. Ann. Allergy Asthma Immunol. 2003; 91(5): 425-435.
 
13.
Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M. Flowering plants and Pteridiophytes of Poland. A checklist. Krakow, W Szafer Institute of Botany, Polish Academy of Sciences. 2002, pp. 89.
 
14.
Zając A, Zając M. Phytogeography of grasses in Poland. In: Frey L (ed.) The Polish Grass Book. W Szafer Institute of Botany, Polish Academy of Sciences. 2002, pp. 454.
 
15.
Szafer W, Wojtusiakowa H. Flowers and Animals. Outline floral ecology. Warszawa, PWN 1969.
 
16.
Szczepanek K. Pollen calendar for Cracow (South Poland) 1982–1991. Aerobiologia. 1994; 10: 65-75.
 
17.
Kasprzyk I, Walanus A. Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start andpeak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). J Environ Mon. 2010; 12: 906-916.
 
18.
Podbielkowski Z. Geografia roślin. Wyd. Szkolne i Pedagog. Warszawa. 1991
 
19.
Dyakowska J. Podręcznik palynologii. Metody i problemy. Wydawnictwa geologiczne, Warszawa. 1979; pp. 325.
 
20.
Von Wahl PG, Puls KE. The emission of mugwort pollen and its flight in the air. Aerobiologia. 1989; 5: 55-63.
 
21.
Wolf KD, Puls KE, Bergmann K-Ch. A mathematical model for mugwort (Artemisia vulgaris L.) pollen forecasts. Aerobiologia. 1998; 14(4): 359-373.
 
22.
Járai-Komlòdi M, Some details about ragweed airborne pollen in Hungary. Aerobiologia. 2000; 16(2): 291-294.
 
23.
Puc M. Ragweed pollen in the air of Szczecin. Ann Agric Environ Med. 2004; 11(1): 53-57.
 
24.
Makra L, Juhász M, Béczi R, Borsos E. The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana. 2005; 44: 57-64.
 
25.
Peternel R, Culig J, Srnec L, Mitic B, Vukusic I, Hrga I. Variation in ragweed (Ambrosia artemisiifolia L.) pollen concentration in Central Croatia. Ann Agric Environ Med. 2005; 12(1): 11-16.
 
26.
Holzfuss J. Beitrag zur Adventivflora von Pommern. Abhandl Berüchte Pommersch Naturforsch Gesellsch. 1937; 16: 94-130.
 
27.
Tacik T. Ambrozja (Ambrosia L.). In: Pawłowski B, Jasiewicz A (eds) Flora Polska. Warszawa – Kraków, PWN 1971, pp. 222-225.
 
28.
Zając A, Zając M. (eds) Distribution Atlas of Vascular Plants in Poland. Edited by Laboratory of Computer Chorology, Institute of Botany, Jagiellonian University, Krakow, 2001, pp. 715.
 
29.
Piotrowska K, Weryszko-Chmielewska E, Ambrosia pollen in the air of Lublin, Poland. Aerobiologia. 2006; 22: 151-158.
 
30.
Rapiejko P, Lipiec A, Wojdas A, Jurkiewicz D. Threshold pollen concentration necessary to evoke allergic symptoms. Int Rev Allergol Clin Immunol. 2004; 10(3): 91-94.
 
31.
Rantio-Lehtimaki A, Koivikko A, Kupias R, Makinen,Y, Pohjola A. Significance of sampling height of airborne particles for aerobiological information. Allergy. 1991; 46: 68-76.
 
32.
Davies RR, Smith LP. Forecasting the start and severity of the hay fiver season. Clin Allergy. 1973; 3: 263-267.
 
33.
Rodriguez-Rajo FJ, Jato V, Aira JM. Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia. 2003; 19: 213-225.
 
34.
Peternel R, Srnec L, Culig J, Hrga I, Hercog P. Poaceae pollen in the atmosphere of Zagreb (Croatia), 2002-2005. Grana. 2006; 45: 130-136.
 
35.
Voltolini S, Minale P, Troise C, Bignardi D, Modena P, Arobba D, Negrini AC. Trend of herbaceous pollen diffusion and allergic sensitisation in Genoa, Italy. Aerobiologia. 2000; 16; 245-249.
 
36.
Taramaracaz P, Lambelet C, Clot B, Keimer C, Hauser C. Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly. 2005; 135: 538-548.
 
37.
Thibaudon M. Ragweed in France. In: Ragweed in Europe. 6 th International Congress on Aerobiology, Perugia, 31 August–5 September 1998, 15. Abstracts. Perugia, Italy 1998.
 
38.
Stachak A, Grinn U, Haas-Nogal M, Kubus M, Nowak G, Nowakowska M. Zieleń Szczecina. Oficyna Szczecin, 2000; pp. 289.
 
39.
Koźmiński C, Czarnecka M. Klimat miasta Szczecina i okolicy. In: Jasnowska J (ed.) Stan Środowiska Miasta i Rejonu Szczecina. Szczecińskie Towarzystwo Naukowe, Szczecin, 1996: pp. 49-68.
 
40.
Hirst JM. An automatic volumetric spore trap. Ann Appl Biology. 1952; 39(2): 257-265.
 
41.
Emberlin J, Savage M, Woodman R. Annual variations in the concentrations of Betula pollen in the London area. Grana. 1993; 32: 359-363.
 
42.
Laaidi K, Laaidi M. Airborne pollen of Ambrosia in Burgundy (France) 1996-1997. Aerobiologia. 1999; 15: 65-69.
 
43.
StatSoft, Inc. STATISTICA (data analysis software system), version 10, www.statsoft.com. 2011.
 
44.
Kaczmarek Z. Metody statystyczne i meteorologiczne w hydrologii i meteorologii. Wyd. Komunikacji i Łączności, Warszawa,1970.
 
45.
Gumbel EJ. Statistics of Extremes. Columbia University Press,1958.
 
46.
Helbig N, Vogel B, Vogel H, Fiedler F. Numerical modelling of pollen dispersion on the regional scale. Aerobiologia. 2004; 20: 3-19.
 
47.
Jato V, Rodriguez-Rajo FJ, Seijo MC, Aira MJ. Poaceae pollen in Galicia (N.W. SPAIN): Characterisation and recent trends in atmospheric pollen season, Int J Biometeorol. 2009; 53: 333-344.
 
48.
Peternel R, Hrga I, Culig J. Variations in mugwort (Artemisia spp.) airborne pollen concentration at three dites in central Croatia, in Period from 2002 to 2003. Coll Antropol. 2006; 30: 895-900.
 
49.
Grewling Ł, Šikoparija B, Skjøth C, Radišic P, Apatini D, Magyar D, et al. Variation in Artemisia pollen seasons in Central and Eastern Europe. Agricultural and Forest Meteorology. 2012; 160: 48-59.
 
50.
El-Ghazaly G, El-Ghazaly PK, Larsson K, Nilsson S. Comparison of airborne pollen grains in Huddinge and Stockholm, Sweden. Aerobiologia. 1993; 9: 53-67.
 
51.
Detandt M, Nolard N. The fluctuation of the allergenic pollen content of the air in Brussels (1982 to 1997). Aerobiologia. 2000; 16: 55-61.
 
52.
Rybniček O, Novotná B, Rybničkowa E, Rybniček K. Ragweed in the Czech Republic. Aerobiologia. 2000; 16: 287-290.
 
53.
Clot B. Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia. 2003; 19: 227-234.
 
54.
Laaidi K. Predicting days of high allergenic risk during Betula pollination using weather types. Int J Biometeorol. 2001; 45: 124-132.
 
55.
Clot B. Airborne birch pollen in Neuchâtel (Switzerland): onset, peak and daily patterns. Aerobiologia. 2001; 17: 25-29.
 
56.
Ranzi A, Lauriola P, Marletto V, Zinoni F. Forecasting airborne pollen concentrations: Development of local models. Aerobiologia. 2003; 19: 39-45.
 
57.
Cotos-Yáñez TR, Rodriguez-Rajo FJ, Jato MV. Short term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. Int J Biometeorol. 2004; 48: 179-185.
 
58.
Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen KM, Hertel O, Frohn LM, Christensen JH. Copenhagen – a significant source of birch (Betula) pollen? Int J Biometeorol. 2008; 52: 453-462.
 
59.
Corden J, Stach A, Millington WM. A comparison of Betula pollen seasons at two European sites; Derby, United Kingdom and Poznan, Poland (1995–1999). Aerobiologia. 2002; 18: 45-53.
 
60.
Puc M. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol. 2012; 49: 310-316.
 
61.
Arizmendi CM, Sanchez JR, Ramos NE, Ramos GI.Time series predictions with neural nets: application to airborne pollen forecasting. Int J Biometeorol. 1993; 37: 139-144.
 
62.
Castellano-Méndez M, Aira MJ, Iglesias I, Jato V, González-Manteiga W. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int J Biometeorol. 2005; 49: 310-316.
 
63.
Stach A, Smith M, Prieto Baena JC, Emberlin J. Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exper Bot. 2008; 62: 323-332.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top