RESEARCH PAPER
Feasibility of classification of drainage and river water quality using machine learning methods based on multidimensional data from a gas sensor array
 
More details
Hide details
1
Faculty of Mathematics and Information Technology, Lublin University of Technology, Lublin, Poland
 
2
Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
 
These authors had equal contribution to this work
 
 
Corresponding author
Magdalena Piłat-Rożek   

Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618, Lublin, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Objective:
The aim of the study is to verify whether the electronic nose system – an array of 17 gas sensors with a signal analysis system – is a useful tool for the classification and preliminary assessment of the quality of drainage water.

Material and methods:
Water samples for analysis were collected in the Park Ludowy (People’s Park), located next to the Bystrzyca River, near the city center of Lublin in eastern Poland. Drainage water was sampled at 4 different points. Samples of synthetic air and river water taken from the Bystrzyca River were used for reference. All water samples were tested using an MOS gas sensor array. In order to assess how the e-nose performed in screening and discriminating/preliminarily classifying and grouping samples, their properties were tested using reference methods and assessing surface water quality. The PCA method, Kohonen’s SOM with superimposed cluster boundaries by McQuitty’s method, random forest and MLP neural network were used to visualize and classify the multivariate data.

Results:
The visualization and multidimensionality reduction methods (PCA and SOM) did not enable to clearly distinguish the observations from different drainage water samples. The supervised random forest and MLP methods coped with the classification of samples much better, achieving 84.3% and 87.6% correct classifications on the test set, respectively.

Conclusions:
Statistical analysis of the chemical properties of the samples showed that even reference tests are unable to clearly distinguish the samples in terms of a single parameter. However, the e-nose method makes it possible to distinguish these samples from a reference sample derived from river water and a clean air sample.

 
REFERENCES (26)
1.
Lvova L, Di Natale C, Paolesse R. Chemical Sensors for Water Potability Assessment. In: Bottled and Packaged Water. Elsevier; 2019:177–208. doi:10.1016/B978-0-12-815272-0.00007-6.
 
2.
Arroyo P, Meléndez F, Suárez JI, Herrero JL, Rodríguez S, Lozano J. Electronic Nose with Digital Gas Sensors Connected via Bluetooth to a Smartphone for Air Quality Measurements. Sensors. 2020;20(3):786. doi:10.3390/s20030786.
 
3.
Herrero JL, Lozano J, Santos JP, Suárez JI. On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere. 2016;152:107–116. doi:10.1016/j.chemosphere.2016.02.106.
 
4.
Ye Z, Li Y, Jin R, Li Q. Toward Accurate Odor Identification and Effective Feature Learning With an AI-Empowered Electronic Nose. IEEE Internet Things J. 2024;11(3):4735–4746. doi:10.1109/JIOT.2023.3299555.
 
5.
Zhang Y, Askim JR, Zhong W, Orlean P, Suslick KS. Identification of pathogenic fungi with an optoelectronic nose. Analyst. 2014;139(8):1922–1928. doi:10.1039/C3AN02112B.
 
6.
Savio S, di Natale C, Paolesse R, Lvova L, Congestri R. Keeping Track of Phaeodactylum tricornutum (Bacillariophyta) Culture Contamination by Potentiometric E-Tongue. Sensors. 2021;21(12):4052. doi:10.3390/s21124052.
 
7.
Jamka K, Wróblewska-Łuczka P, Adamczuk P, Zawadzki P, Bojar H, Raszewski G. Methodology for preparing a cosmetic sample for the development of Microorganism Detection System (SDM) software and artificial intelligence learning to recognize specific microbial species. Ann Agric Environ Med. 2021;28(4):681–685. doi:10.26444/aaem/144696.
 
8.
Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nat 1982 2995881. 1982;299(5881):352–355. doi:10.1038/299352a0.
 
9.
Piłat-Rożek M, Łazuka E, Majerek D, Szeląg B, Duda-Saternus S, Łagód G. Application of Machine Learning Methods for an Analysis of E-Nose Multidimensional Signals in Wastewater Treatment. Sensors. 2023;23(1):487. doi:10.3390/s23010487.
 
10.
Łagód G, Duda SM, Majerek D, Szutt A, Dołhańczuk-Śródka A. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes. 2019;7(5):251. doi:10.3390/pr7050251.
 
11.
F.R.S KP. LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci. 1901;2(11):559–572. doi:10.1080/14786440109462720.
 
12.
Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24(7):498–520. doi:10.1037/h0070888.
 
13.
Mardia KV, Kent T, Bibby J. Multivariate Analysis. Academic Press Limited; 1979.
 
14.
Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43(1):59–69. doi:10.1007/BF00337288.
 
15.
Haykin S. Neural Networks and Learning Machines. Pearson Education; 2009.
 
16.
Ponmalai R, Kamath C. Self-Organizing Maps and Their Applications to Data Analysis; 2019. doi:10.2172/1566795.
 
17.
Everitt BS, Landau S, Leese M, Stahl D. Hierarchical Clustering. In: Cluster Analysis, 5th Edition. John Wiley & Sons; 2011. pp. 71–110. doi:10.1002/9780470977811.ch4.
 
18.
Breiman L. Using adaptive bagging to debias regressions. Stat Dept UCB. 1999;547.
 
19.
Kuhn M, Johnson K. Regression Trees and Rule-Based Models. In: Applied Predictive Modeling. New York: Springer; 2013. pp. 173–220. doi:10.1007/978-1-4614-6849-3_8.
 
20.
Kuhn M, Johnson K. Nonlinear Classification Models. In: Applied Predictive Modeling. New York: Springer; 2013. pp. 329–367. doi:10.1007/978-1-4614-6849-3_13.
 
21.
R Core Team. R: A Language and Environment for Statistical Computing. Published online 2024. http://www.r-project.org/.
 
22.
Wehrens R, Buydens LMC. Self- and Super-organizing Maps in R: The kohonen Package. J Stat Softw. 2007;21(5). doi:10.18637/jss.v021.i05.
 
23.
Kuhn M, Wickham H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. Published online 2020. https://www.tidymodels.org.
 
24.
Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686. doi:10.21105/joss.01686.
 
25.
Guz Ł, Łagód G, Jaromin-Gleń K, Suchorab Z, Sobczuk H, Bieganowski A. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors. 2015;15(1):1–21. doi:10.3390/S150100001.
 
26.
Babko R, Szulżyk-Cieplak J, Danko Y, Duda S, Kirichenko-Babko M, Łagód G. Effect of Stormwater System on the Receiver. J Ecol Eng. 2019;20(6):52–59. doi:10.12911/22998993/109433.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top