EDITORIAL
Designer Drug (DD) abuse in Poland; a review of the psychoactive and toxic properties of substances found from seizures of illegal drug products and the legal consequences thereof. Part 1 – Cannabinoids and Cathinones
 
More details
Hide details
1
Chief Sanitary Inspectorate, Warsaw, Poland
 
2
Institute of Haematology and Transfusion Medicine, Warsaw, Poland
 
3
Independent Laboratory of Molecular Biology, Institute of Rural Health, Lublin, Poland
 
4
Department of Public Health, University of Information Technology and Management, Rzeszow, Poland
 
5
Department of Mother and Child Health, University of Medical Sciences, Poznan, Poland
 
6
Department of Hygiene, Chair of Social Medicine, University of Medical Sciences, Poznan, Poland
 
 
Ann Agric Environ Med. 2012;19(4):857-870
 
KEYWORDS
ABSTRACT
Faced with the rapidly growing increase of designer drug abuse, particularly amongst the younger generation, various legislative strategies are currently employed world-wide for tackling this problem – however with mixed results. The key issue is that the producers of DDs are able to either exploit existing legal substances intended for other uses, but which have been found to possess psychoactive properties, or to synthesise new psychoactive substances by introducing chemical modifications, often very minor ones, thereby avoiding the prohibited use of chemicals included on any banned lists. Some countries opt to ban new drugs as and when shown or considered to be harmful, while others introduce sweeping bans based on chemical structure. Nevertheless, an ever increasing diversity of new DDs are constantly appearing on domestic and Internet markets. Poland, together with the UK and Eire, has placed temporary bans on all DDs whenever they have been identified, thus enabling sufficient time for assessing their potential hazards to health. Part of this ‘holding’ strategy entails a thorough review of the scientific literature, including expert opinion when direct evidence is lacking, as well as information received from EU support organisations Europol and the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). This paper, in two parts, therefore aims to provide an up-to-date summary review of available scientific evidence on the harm caused by the six main chemical groupings of DDs found in drug seizures of illegal products recently made in Poland. The first part is devoted to Cannabinoids and Cathinones derivatives. Ensuing legislation can therefore be rapidly formulated to make the bans permanent as appropriate.
 
REFERENCES (205)
1.
European Monitoring Centre for Drugs and Drug addiction (EMCDDA). Annual Report; 2010. http://www.emcdda.europa.eu/pu... (access: 2012.01.06).
 
2.
EMCDDA-Europol Annual Report on the implementation of Council Decision 2005/387/JHA; 2010. http://www.kom.gov.tr/Tr/Dosya... (access: 2012.01.06).
 
3.
United Nations Office on Drugs and Crime (UNODC). Annual Report; 2010. http://www.unodc.org/unodc/en/... (access 2012.01.06).
 
4.
Kapka-Skrzypczak L, Kulpa P, Sawicki K, Cyranka M, Wojtyla A, Kruszewski M. Legal highs – legal aspects and legislative solutions. Ann Agric Environ Med. 2011; 18(2): 304-9.
 
5.
Baron M, Elie M, Elie L. An analysis of legal highs: do they contain what it says on the tin? Drug Test Anal. 2011; 3(9): 576-81.
 
6.
Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J. Analysis of NRG ‘legal highs’ in the UK: identiffication and formation of novel cathinones. Drug Test. 2011 3(9): 569-75.
 
7.
Davies S, Wood DM, Smith G, Button J, Ramsey J, Archer R, et al. Purchasing ‘legal highs’ on the Internet – is there consistency in what you get? QJM 2010; 103: 489-493.
 
8.
Wood DM, Davies S, Cummins A, Button J, Holt DW, Ramsey J, et al. Energy-1 (‘NRG-1’): don’t believe what the newspapers say about it being legal. Emerg Med J. 2011; 28: 1068-1070.
 
9.
Brogi S, Corelli F, Di Marzo V, Ligresti A, Mugnaini C, Pasquini S, et al. Three-dimensional quantitative structure-selectivity relationships analysis guided rational design of a highly selective ligand for the cannabinoid receptor 2. Eur J Med Chem. 2011; 46(2): 547-55.
 
10.
Uchiyama N, Kikura-Hanajiri R, Goda Y. Identification of a novel annabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its a nity for cannabinoid CB1 and CB2 receptors. Chem Pharm Bull (Tokyo) 2011; 59(9): 1203-5.
 
11.
Uchiyama N, Kikura-Hanajiri R, Ogata J, Goda Y. Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. Forensic Sci Int. 2010; 198(1-3): 31-8.
 
12.
Vardakou I, Pistos C, Spiliopoulou CH. Spice drugs as a new trend: mode of action, identification and legislation. Toxicol Lett. 2010; 197(3): 157-62.
 
13.
Compton DR, Johnson MR, Melvin LS, Martin BR. Pharmacological pro le of a series of bicyclic cannabinoid analogs: classification as cannabimimetic agents. J. Pharmacol. Exp. Ther. 1992; 260(1): 201-209.
 
14.
Rubino T, Parolaro D. Long lasting consequences of cannabis exposure in adolescence. Mol Cell Endocrinol. 2008; 286(1-2 Suppl 1): S108-13.
 
15.
Parolaro D, Realini N, Vigano D, Guidali C, Rubino T. The endocannabinoid system and psychiatric disorders. Exp Neurol. 2010; 224(1): 3-14.
 
16.
Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 2002; 325: 1212-1213.
 
17.
Ehrenreich H, Rinn T, Kunert HJ, Moeller MR, Poser W, Schilling L, et al. Speciffic attentional dysfunction in adults following early start of cannabis use. Psychopharmacol. 1999; 142(3): 295-301.
 
18.
Pope Jr HG, Gruber AJ, Hudson JI, Cohane G, Huestis MA, Yurgelun-Todd D. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend. 2003; 69(3): 303-10.
 
19.
Schwartz RH, Gruenewald PJ, Klitzner M, Fedio P. Short-term Memory Impairment in Cannabis-Dependent Adolescents. Am J Dis Child. 1989 143: 1214-1219.
 
20.
Moore TH, Zammit S, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 2007; 370(9584): 319-28.
 
21.
O’Shea M, Singh ME, McGregor IS, Mallet PE. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol. 2004; 18: 502-508.
 
22.
O‘Shea M, McGregor IS, Mallet P. Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol. 2006; 20: 611-621.
 
23.
Schneider M, Koch M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacol. 2003; 28(10): 1760-9.
 
24.
Muller-Vahl KR, Emrich HM. Cannabis and schizophrenia: towards a cannabinoid hypothesis of schizophrenia. Expert Rev Neurother. 2008; 8(7): 1037-48.
 
25.
Fernandez-Espejo E, Viveros MP, Nunez L, Ellenbroek BA, Rodriguez de Fonseca F. Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacol. 2009; 206(4): 531-49.
 
26.
Brouser, D. Synthetic Cannabis May Pose an Even Greater Psychosis Risk; ‚Spice‘ Packs a Bigger Punch than Natural Cannabis http://www.medscape.com/viewar... (access: 2012.09.28).
 
27.
Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE. National survey results on drug use from the Monitoring the Future study, 1975-2003. Volume I: Secondary school students. Volume II: College students and adults ages 19-45. National Institute on Drug Abuse; Bethesda, MD: 2004. (NIH Publications 04-5507 & 04-5508).
 
28.
Palmer SL, akur GA, Makriyannis A. Cannabinergic ligands. Chem Phys Lipids. 2002; 121(1-2): 3-19.
 
29.
Abood ME, Martin BR. Neurobiology of marijuana abuse. Trends Pharmacol Sci. 1992; 13(5): 201-6.
 
30.
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346(6284): 561-4.
 
31.
Nestor L, Roberts G, Garavan H, Hester R. Deficits in learning and memory: parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. Neuroimage 2008; 40(3): 1328-39.
 
32.
Pertwee RG. Pharmacology of cannabinoid receptor ligands. Curr Med Chem. 1999; 6(8): 635-64.
 
33.
De Freitas GBL, Da Silva LL, Romeiro NC, Fraga CAM. Development of CoMFA and CoMSIA models of affinity and selectivity for indole ligands of cannabinoid CB1 and CB2 receptors. Eur J Med Chem. 2009; 44(6): 2482-96.
 
34.
Reggio PH. Pharmacophores for ligand recognition and activation/inactivation of the cannabinoid receptors. Curr Pharm Des. 2003; 9(20): 1607-33.
 
35.
Huffman JW. CB2 receptor ligands. Mini Rev Med Chem. 2005; 5(7): 641-9.
 
36.
Agirregoitia E, Carracedo A, Subiran N, Valdivia A, Agirregoitia N, Peralta L, et al. The CB(2) cannabinoid receptor regulates human sperm cell motility. Fertil Steril. 2010; 93(5): 1378-87.
 
37.
Battista N, Rapino C, Di Tommaso M, Bari M, Pasquariello N, Maccarrone M. Regulation of male fertility by the endocannabinoid system. Mol Cell Endocrinol. 2008; 286(1-2 Suppl 1): S17-23.
 
38.
Jutras-Aswad D, DiNieri JA, Harkany T, Hurd YL. Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur Arch Psychiatry Clin Neurosci. 2009; 259(7): 395-412.
 
39.
Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML. Prevention of Alzheimer’s Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation. J Neurosci. 2005; 25: 1904-1913.
 
40.
Pacher P, Bátkai S, Kunos G. e Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacol Rev. 2006; 58: 389-462.
 
41.
Lombard C, Nagarkatti M, Nagarkatti P. CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol. 2007; 122(3): 259-70.
 
42.
Gruber SA, Rogowska J, Yurgelun-Todd DA. Altered affective response in marijuana smokers: an FMRI study. Drug Alcohol Depend. 2009; 105(1-2): 139-53.
 
43.
Witkin JM, Tzavara ET, Nomikos GG. A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol. 2005; 16(5-6): 315-31.
 
44.
Wadsworth EJK, Moss SC, Simpson SA, Smith AP. Cannabis use, cognitive performance and mood in a sample of workers. J Psychopharmacol. 2006; 20: 14-23.
 
45.
Tart CT. On Being Stoned: A Psychological Study of Marijuana Intoxication. Science and behaviour Books Palo Alto CA; 1971 ISBN 0-8314-0027-7.
 
46.
Campolongo P, Trezza V, Ratano P, Palmery M, Cuomo V. Developmental consequences of perinatal cannabis exposure: behavioral and neuroendocrine effects in adult rodents. Psychopharmacol. 2011; 214(1): 5-15.
 
47.
Rice D, Barone Jr S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000; 108 Suppl 3: 511-33.
 
48.
Trezza V, Cuomo V, Vanderschuren LJ. Cannabis and the developing brain: insights from behavior. Eur J Pharmacol. 2008; 585(2-3): 441-52.
 
49.
Huffman JW, Mabon R, Wu MJ, Lu J, Hart R, Hurst DP, et al. 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB(1) cannabinoid receptor. Bioorg Med Chem. 2003; 11(4): 539-49.
 
50.
Huffman JW, Zengin G, Wu MJ, Lu J, Hynd G, Bushell K, et al. Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg Med Chem. 2005; 13(1): 89-112.
 
51.
Padgett LW. Recent developments in cannabinoid ligands. Life Sci. 2005; 77(14): 1767-98.
 
52.
Uchiyama N, Kikura-Hanajiri R, Shoda T, Fukuhara K, Goda Y. Isomeric analysis of synthetic cannabinoids detected as designer drugs. Yakugaku Zasshi. 2011; 131(7): 1141-7.
 
53.
Atwood BK, Huffman J, Straiker A, Mackie K. JWH018, a common constituent of ‘Spice’ herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br J Pharmacol. 2010; 160(3): 585-93.
 
54.
Manera C, Tuccinardi T, Martinelli A. Indoles and related compounds as cannabinoid ligands. Mini Rev Med Chem. 2008; 8 (4): 370-87.
 
55.
Aung MM, Griffin G, Hu¬man JW, Wu M, Keel C, Yang B, et al. Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend. 2000; 60(2): 133-40.
 
56.
Ginsburg BC, McMahon LR, Sanchez JJ, Javors MA. Purity of Synthetic Cannabinoids Sold Online for Recreational Use. J Anal Toxicol. 2012; 36: 66-68.
 
57.
Hudson S, Ramsey J, King L, Timbers S, Maynard S, Dargan PI, et al. Use of High-Resolution Accurate Mass Spectrometry to Detect Reported and Previously Unreported Cannabinomimetics in „Herbal High“ Products. J Anal Toxicol. 2010; 34: 252-260.
 
58.
Bononi M, Belgi P, Tateo F. Analytical Data for Identification of the Cannabimimetic Phenylacetylindole JWH-203. J Anal Toxicol. 2011; 35: 360-363.
 
59.
Dresen S, Kneisel S, Weinmann W, Zimmermann R, Auwarter V. Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantitation of synthetic cannabinoids of the aminoalkylindole type and methanandamide in serum and its application to forensic samples. J Mass Spectrom. 2011; 46(2): 163-71.
 
60.
Ernst L, Schiebel HM, Theuring C, Lindigkeit R, Beuerle T. Identification and characterization of JWH-122 used as new ingredient in „Spice-like“ herbal incenses. Forensic Sci Int. 2011; 208(1-3): e31-5.
 
61.
Kacinko SL, Xu A, Homan JW, McMullin MM, Warrington DM, Logan BK. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Identification and Quantification of JWH-018, JWH-073, JWH-019, and JWH-250 in Human Whole Blood. J Anal Toxicol. 2011; 35: 386-393.
 
62.
Grigoryeva A, Melnika A, Savchukb S, Simonovc A, Rozhanetsd V. Gas and liquid chromatography–mass spectrometry studies on the metabolism of the synthetic phenylacetylindole cannabimimetic JWH-250, the psychoactive component ofsmoking mixtures. J Chromat B. 2011; 879 (25)(1): 2519-2526.
 
63.
Kikura-Hanajiri R, Uchiyama N, Goda Y. Survey of current trends in the abuse of psychotropic substances and plants in Japan. Leg Med. 2011; 13(3): 109-15.
 
64.
Makriyannis, A, Deng, H. Cannabimimetic indole derivatives. Patent PCT/US00/28832 1-25; 2001 Apr 26.
 
65.
Dargan PI, Hudson S, Ramsey J, Wood DM. The impact of changes in UK classification of the synthetic cannabinoid receptor agonists in ‚Spice‘. Int J Drug Policy. 2011; 22(4): 274-7.
 
66.
Pennings EJ, Opperhuizen A, van Amsterdam JG. Risk assessment of khat use in the Netherlands: a review based on adverse health effects, prevalence, criminal involvement and public order. Regul Toxicol Pharmacol. 2008; 52(3): 199-207.
 
67.
ACMD (Advisory Council for the Misuse of Drugs) Report; 2010. Consideration of the cathinones. http://www.namsdl.org/document... (access: 2012.01.23).
 
68.
Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, et al. Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacol. 2011; 214(3): 593-602.
 
69.
Dal Cason TA, Young R, Glennon RA. Cathinone: an investigation of several N-alkyl and methylenedioxy-substituted analogs. Pharmacol Biochem Behav. 1997; 58(4): 1109-16.
 
70.
Sparago M, Wlos J, Yuan J, Hatzidimitriou G, Tolliver J, Dal Cason TA, et al. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): a new drug of abuse. J. Pharmacol. Exp. Ther. 1996; 279: 1043.
 
71.
Iverson L. ACMD report: Consideration of the cathinones; 2010. http://www.namsdl.org/document... (access 2012.01.28).
 
72.
Bronson ME, Jiang W, DeRuiter J, Clark CR. A behavioral comparison of Nexus, cathinone, BDB, and MDA. Pharmacol Biochem Behav. 1995; 51(2-3): 473-5.
 
73.
Cleary L, Docherty JR. Actions of amphetamine derivatives and cathinone at the noradrenaline transporter. Eur J Pharmacol. 2003; 476(1-2): 31-4.
 
74.
Patel NB. Mechanism of action of cathinone: the active ingredient of khat (Catha edulis). East Afr Med J. 2000; 77(6): 329-32.
 
75.
Glennon RA, Liebowitz SM. Serotonin receptor affinity of cathinone and related analogues. J Med Chem. 1982; 25(4): 393-7.
 
76.
Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, et al. e Designer Methcathinone Analogs, Mephedrone and Methylone, are Substrates for Monoamine Transporters in Brain Tissue. Neuropsychopharmacol. 2012; 37(5): 1192-203.
 
77.
Bentur Y, Bloom-Krasik A, Raikhlin-Eisenkraft B. Illicit cathinone (“Hagigat”) poisoning. Clin Toxicol. 2008; 46(3): 206-10.
 
78.
Al-Motarreb A, Al-Habori M, Broadley KJ. Khat chewing, cardiovascular diseases and other internal medical problems: the current situation and directions for future research. J Ethnopharmacol. 2010; 132(3): 540-8.
 
79.
Kalix P. Pharmacological properties of the stimulant khat. Pharmacol Ther. 1990; 48(3): 397-416.
 
80.
Brenneisen R, Fisch HU, Koelbing U, Geisshusler S, Kalix P. Amphetamine-like effects in humans of the khat alkaloid cathinone. Br J Clin Pharmacol. 1990; 30(6): 825-8.
 
81.
Wood DM, Greene SL, Dargan PI. Clinical pattern of toxicity associated with the novel synthetic cathinone mephedrone. Emerg Med. J. 2011; 28: 280-282.
 
82.
Karila L, Reynaud M. GHB and synthetic cathinones: clinical effects and potential consequences. Drug Test Anal. 2011; 3(9): 552-9.
 
83.
Spiller HA, Ryan ML, Weston RG, Jansen J. Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol. 2011; 49(6): 499-505.
 
84.
Kalix P. Cathinone, a natural amphetamine. Pharmacol Toxicol. 1992; 70(2): 77-86.
 
85.
Kalix P. Catha edulis, a plant that has amphetamine effects. Pharm World Sci. 1996; 18(2): 69-73.
 
86.
Giannini AJ, Burge H, Shaheen JM, Price WA. Khat: another drug of abuse? J Psychoactive Drugs 1986; 18(2): 155-8.
 
87.
Graziani M, Milella MS, Nencini P. Khat chewing from the pharmacological point of view: an update. Subst Use Misuse 2008; 43(6): 762-83.
 
88.
Al-Motarreb A, Baker K Broadley KJ. Khat: pharmacological and medical aspects and its social use in Yemen. Phytother Res. 2002; 16(5): 403-13.
 
89.
Al-Motarreb AL, Broadley KJ. Coronary and aortic vasoconstriction by cathinone, the active constituent of khat. Auton Autacoid Pharmacol. 2003; 23(5-6):319-26.
 
90.
Hassan NA, Gunaid AA, El-Khally FM, Murray-Lyon IM. The effect of chewing Khat leaves on human mood. Saudi Med J. 2002; 23(7): 850-3.
 
91.
Feyissa AM, Kelly JP. A review of the neuropharmacological properties of khat. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(5): 1147-66.
 
92.
Nencini P, Ahmed AM. Khat consumption: a pharmacological review. Drug Alcohol Depend. 1989; 23(1): 19-29.
 
93.
Odenwald M, Neuner F, Schauer M, Elbert T, Catani C, Lingenfelder B et al. (2005) Khat use as risk factor for psychotic disorders: a cross-sectional and case-control study in Somalia. BMC Med. 2005; 3: 5.
 
94.
Odenwald M, Hinkel H, Schauer E, Schauer M, Elbert T, Neuner F et al. Use of khat and posttraumatic stress disorder as risk factors for psychotic symptoms: a study of Somali combatants. Soc Sci Med. 2009; 69(7): 1040-8.
 
95.
Alem A, Shibre T. Khat induced psychosis and its medico-legal implication: a case report. Ethiop Med J. 1997; 35(2): 137-9.
 
96.
Widler P, Mathys K, Brenneisen R, Kalix P, Fisch HU. Pharmaco-dynamics and pharmacokinetics of khat: a controlled study. Clin Pharmacol Ther. 1994; 55(5): 556-62.
 
97.
Toennes SW, Harder S, Schramm M, Niess C, Kauert GF. Pharmaco-kinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br J Clin Pharmacol. 2003; 56(1): 125-30.
 
98.
Mathys K, Brenneisen R. Determination of (S)-(-)-cathinone and its metabolites (R,S)-(-)-norephedrine and (R,R)-(-)-norpseudoephedrine in urine by high-performance liquid chromatography with photodiode-array detection. J Chromatogr. 1992; 93(1-2): 79-85.
 
99.
Brenneisen R, Geisshusler S, Schorno X. Metabolism of cathinone to (-)-norephedrine and (-)-norpseudoephedrine. J Pharm Pharmacol. 1986; 38(4): 298-300.
 
100.
Guantai AN, Maitai CK. Metabolism of cathinone to d-norpseudo-ephedrine in humans. J Pharm Sci. 1983; 72(10): 1217-8.
 
101.
Al-Motarreb A, Briancon S, Al-Jaber N, Al-Adhi B, Al-Jailani F, Salek MS et al. Khat chewing is a risk factor for acute myocardialinfarction: a case-control study. Br J Clin Pharmacol. 2005; 59(5): 574-81.
 
102.
Getahun W, Gedif T, Tesfaye F. Regular Khat (Catha edulis) chewing is associated with elevated diastolic blood pressure among adults in Butajira, Ethiopia: a comparative study. BMC Pub Health 2010; 10: 390.
 
103.
Ali WM, Zubaid M, Al-Motarreb A, Singh R, Al-Shereiqi SZ, Shehab A et al. Association of khat chewing with increased risk of stroke and death in patients presenting with acute coronary syndrome. Mayo Clin Proc. 2010; 85(11): 974-80.
 
104.
Hassan NA, Gunaid AA, Murray-Lyon IM. Khat (Catha edulis): health aspects of khat chewing. East Mediterr Health J. 2007; 13(3): 706-18.
 
105.
Al-Habori M. The potential adverse effects of habitual use of Catha edulis (khat). Expert Opin Drug Saf. 2005; 4(6): 1145-54.
 
106.
Dhaifalah I, Santavy J. Khat habit and its health effect. A natural amphetamine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004; 148(1): 11-5.
 
107.
Mohammed A, Engidawork E. Reproductive parameters are differentially altered following subchronic administration of Catha edulis F. (Khat) extract and cathinone in male rats. J Ethnopharmacol. 2011; 134(3): 977-83.
 
108.
Kuczkowski KM. Herbal ecstasy: cardiovascular complications of khat chewing in pregnancy. Acta Anaesthesiol Belg. 2005; 56(1): 19-21.
 
109.
Dargan PI, Albert S, Wood DM. Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. QJM 2010; 103:875-879.
 
110.
Biliński P, Kapka-Skrzypczak L, Jabłoński P. Determining the scale of designer drugs (DD) abuse and risk to public health in Poland through an epidemiological study in adolescents. Ann Agric Environ Med. 2012; 19(3): 357-364.
 
111.
James D, Adams RD, Spears R, Cooper G, Lupton DJ, Thompson JP, et al. Clinical characteristics of mephedrone toxicity reported to the UK National Poisons Information Service. Emerg. Med. J. 2011; 28: 686-689.
 
112.
Wood DM, Davies S, Greene SL, Button J, Holt DW, Ramsey J, et al. Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol. 2010; 48(9): 924-7.
 
113.
Wood DM, Davies S, Puchnarewicz M, Button J, Archer R, Ovaska H, et al. Recreational use of mephedrone (4-methylmethcathinone, 4-MMC) with associated sympathomimetic toxicity. J Med Toxicol. 2010; 6(3): 327-30.
 
114.
Regan L, Mitchelson M, Macdonald C. Mephedrone toxicity in a Scottish emergency department. Emerg. Med J. 2011; 28: 1055-1058.
 
115.
Wood DM, Greene SL, Dargan PI. Emergency department presentations in determining the effectiveness of drug control in the United Kingdom: mephedrone (4-methylmethcathinone) control appears to be effective using this model. Emerg Med J. 2011 [Epub ahead of print].
 
116.
Maskell PD, De Paoli G, Seneviratne C, Pounder DJ. Mephedrone (4-Methylmethcathinone)-Related Deaths. J Anal Toxicol. 2011; 35: 188-191.
 
117.
Dickson AJ, Vorce SP, Levine B, Past MP. Multiple-Drug Toxicity Caused by the Coadministration of 4-Methylmethcathinone (Mephedrone) and Heroin. J Anal Toxicol. 2010; 34: 162-168.
 
118.
Schifano F, Corkery J, Ghodse AH. Suspected and con rmed fatalities associated with mephedrone (4-methylmethcathinone, “meow meow”) in the United kingdom. J Clin Psychopharmacol. 2012; 32(5): 710-4.
 
119.
Ahmed N, Sew Hoy BP, McInerney J. Methaemoglobinaemia due to mephedrone (‘snow’). BMJ Case Rep. 2010. pii: bcr0420102879. doi: 10.1136/bcr.04.2010.2879.
 
120.
Mackay K, Taylor M, Bajaj N. The adverse consequences of mephedrone use: a case series. The Psychiatrist. 2011; 35: 203-205.
 
121.
Bajaj N, Mullen D, Wylie S. Dependence and psychosis with 4-methylmethcathinone (mephedrone) use. BMJ Case Rep. 2010. pii: bcr0220102780. doi: 10.1136/bcr.02.2010.2780.
 
122.
Garrett G, Sweeney M. The serotonin syndrome as a result of mephedrone toxicity. BMJ Case Rep. 2010. pii: bcr0420102925. doi: 10.1136/bcr.04.2010.2925.
 
123.
Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J. Mephedrone: use, subjective effects and health risks. Addiction 2011; 106(11): 1991-6.
 
124.
Wood DM, Dargan PI. Mephedrone (4-methylmethcathinone): What is new in our understanding of its use and toxicity. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(2): 227-33.
 
125.
Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, et al. 4-Methylmethcathinone (Mephedrone): Neuropharmacological E¬ects of a Designer Stimulant of Abuse. J Pharmacol Exp er. 2011; 339: 530-536.
 
126.
Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol. 2012; 167(2): 407-20.
 
127.
Varner KJ, Daigle K, Weed PF, Lewis PB, Mahne SE, Sankaranarayanan A, et al. Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats. Psychopharmacology (Berl). 2012 [Epub ahead of print].
 
128.
Meng H, Cao J, Kang J, Ying X, Ji J, Reynolds W, et al. Mephedrone, a new designer drug of abuse, produces acute hemodynamic effects in the rat. Toxicol Lett. 2012; 208(1): 62-8.
 
129.
Martinez-Clemente J, Escubedo E, Pubill D, Camarasa J. Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol. 2012; 22(3): 231-6.
 
130.
Meyer MR, Wilhelm J, Peters FT, Maurer HH. Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem. 2010; 397(3): 1225-33.
 
131.
Meyer MR, Maurer HH. Metabolism of designer drugs of abuse: an updated review. Curr Drug Metab. 2010; 11(5): 468-82.
 
132.
Pedersen AJ, Reitzel LA, Johansen SS, Linnet K. In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test Anal. 2012. doi: 10.1002/dta.1369. [Epub ahead of print].
 
133.
Hyde JF, Browning E, Adams R. Synthetic Homologs of d,l-Ephedrine. J Am Chem Soc. 1928; 50 (8): 2287–2292.
 
134.
EMCCDA. Synthetic Cathinones; 2012. http://emcdda.europa.eu/public... les/synthetic-cathinones. (access: 2012.02.10).
 
135.
Westphal F, Junge T, Girreser U, Greibl W, Doering C. Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identi cation of their isocathinone by-products. Forensic Sci Int. 2012; 217(1-3): 157-67.
 
136.
Maheux CR, Copeland CR. Chemical analysis of two new designer drugs: buphedrone and pentedrone. Drug Test Anal. 2012; 4(1): 17-23.
 
137.
Brandt SD, Sumnall HR, Measham, Cole J. Analyses of second-generation ‘legal highs’ in the UK: initial ndings. Drug Test Anal. 2010; 2(8):377-82.
 
138.
Jankovics P, Varadi A, Tolgyesi L, Lohner S, Nemeth-Palotas J, Kszegi-Szalai H. Identi cation and characterization of the new designer drug 4’-methylethcathinone (4-MEC) and elaboration of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening method for seven different methcathinone analogs. Forensic Sci Int. 2011; 210(1-3): 213-20.
 
139.
Khreita OIG, Irving C, Schmidt E, Parkinson JA, Nic N, Sutcliffe DB. Synthesis, full chemical characterisation and development of validated methods for the quantification of the components found in the evolved “legal high” NRG-2. J Pharm Biomed Anal. 2012; 61(5): 122-135.
 
140.
Reitzel LA, Dalsgaard PW, Muller IB, Cornett C. Identification of ten new designer drugs by GC-MS, UPLC-QTOF-MS, and NMR as part of a police investigation of a Danish internet company. Drug Test Anal. 2012; 4(5): 342-54.
 
141.
Rothman RB, Baumann MH. Therapeutic potential of monoamine transporter substrates. Curr Top Med Chem. 2006; 6(17): 1845-59.
 
142.
Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, et al. In Vitro Characterization of Ephedrine-Related Stereoisomers at Biogenic Amine Transporters and the Receptorome Reveals Selective Actions as Norepinephrine Transporter Substrates. J Pharmacol Exp Ther. 2003; 307: 138.
 
143.
Boulanger-Gobeil C, St-Onge M, Laliberte M, Auger PL. Seizures and hyponatremia related to ethcathinone and methylone poisoning. J Med Toxicol. 2012; 8(1): 59-61.
 
144.
Davies S, Puchnarewicz M, Button J, Dargan PI, Wood DM, Archer R, Ramsey J, Lee T, Holt DW. Two cases of confirmed ingestion of the novel designer compounds: 4-methylmethcathinone (mephedrone) and 3- uoromethcathinone’, London Toxicology Group poster, London; 2009. http://www.ltg.uk.net/admin/ les/MethCase(2).pdf. (access: 2012.02.03).
 
145.
Archer RP. Fluoromethcathinone, a new substance of abuse. Forensic Sci Int. 2009; 185(1-3): 10-20.
 
146.
Gri ths P, Lopez D, Sedefov R, Gallegos A, Hughes B, Noor A et al. Khat use and monitoring drug use in Europe: the current situation and issues for the future. J Ethnopharmacol. 2010; 132(3): 578-83.
 
147.
Westphal F, Junge T, Klein B, Fritschi G, Girreser U. Spectroscopic characterization of 3,4-methylenedioxypyrrolidinobutyrophenone: a new designer drug with α-pyrrolidinophenone structure. Forensic Sci Int. 2011; 209(1-3): 126-32.
 
148.
Chemical Dependency Counseling. Watch out for “MDPBP”; 2011. http://centauruniversity.wordp... (access: 2012.04.08).
 
149.
EMCDDA–Europol 2010 Annual Report on the implementation of Council Decision 2005/387/JHA; Annex 2 – New psychoactive substances reported to the EMCDDA and Europol for the first time in 2010 under the terms of Council Decision 2005/387/JHA http://www.emcdda.europa.eu/at... ed_in_2010.pdf (access: 2012.04.08).
 
150.
Durham M. Ivory wave: the next mephedrone? Emerg Med J. 2011; 28: 1059-1060.
 
151.
Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem. 2006; 49(4): 1420-32.
 
152.
Westphal W, Junge T, Rosner P, Sonnichsen F, Schuster F. Mass and NMR spectroscopic characterization of 3,4-methylenedioxypyrovalerone: a designer drug with alpha-pyrrolidinophenone structure. Forensic Sci Int. 2009; 190(1-3): 1-8.
 
153.
Sauer C, Ho¬mann K, Schimmel U, Peters FT. Acute poisoning involving the pyrrolidinophenone-type designer drug 4’-methyl-alpha-pyrrolidinohexanophenone (MPHP). Forensic Sci Int. 2011; 208(1-3): e20-5.
 
154.
Yohannan JC, Bozenko Jr. JS. The characterization of 3, 4-methy-lenedioxypyrovalerone (MDPV). Microgram J. 2010; 7(1): 12-15.
 
155.
Gardos G, Cole JO. Evaluation of pyrovalerone in chronically fatigued volunteers. Curr Ther Res Clin Exp. 1971; 13(10): 631-5.
 
156.
Deniker P, Loo H, Cuche H, Roux JM. Abuse of pyrovalerone by drug addicts. Ann Med Psychol. 1975; 2(4): 745-8.
 
157.
Ross S, Peselow E. e neurobiology of addictive disorders. Clin Neuropharmacol. 2009; 32(5): 269-76.
 
158.
Ojanpera IA, Heikman PK, Rasanen IJ. Urine analysis of 3,4-methylenedioxypyrovalerone in opioid-dependent patients by gas chromatography-mass spectrometry. Ther Drug Monit. 2011; 33(2): 257-63.
 
159.
Coppola M, Mondola R. 3,4-methylenedioxypyrovalerone (MDPV): chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicol Lett. 2012; 208(1): 12-5.
 
160.
Ross EA, Watson M, Goldberger B. „Bath salts“ intoxication. N Engl J Med. 2011; 365(10): 967-8.
 
161.
Psychonaut WebMapping Research Group, MDPV Report, Institute of Psychiatry, King’s college London, UK; 2009. http://www.psychonautproject.e... (access: 2012.02.28).
 
162.
Springer D, Fritschi G, Maurer HH. Metabolism of the new designer drug alpha-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4’-methyl-alpha-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003; 796(2): 253-66.
 
163.
Strano-Rossi S, Cadwallader AB, de la Torre X, Botre F. Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2010; 24(18): 2706-14.
 
164.
Meyer MR, Du P, Schuster F, Maurer HH. Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom. 2010; 45(12): 1426-42.
 
165.
Centers for Disease Control and Prevention (CDC). Emergency department visits a er use of a drug sold as “bath salts”--Michigan, November 13, 2010-March 31, 2011. MMWR Morb Mortal Wkly Rep. 2011; 60(19): 624-7.
 
166.
Melton ST. Bath Salts: An ‘Ivory Wave’ Epidemic? Medscape Pharmacists © 2011 WebMD, LLC http://www.medscape.com/viewar... (access: 2012.03.03).
 
167.
Prosser JM, Nelson LS. The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol. 2012; 8(1): 33-42.
 
168.
Adebamiro A, Perazella MA. Recurrent acute kidney injury following bath salts intoxication. Am J Kidney Dis. 2012; 59(2): 273-5.
 
169.
Dorairaj JJ, Healy C, McMenamin M, Eadie PA. The untold truth about “bath salt” highs: A case series demonstrating local tissue injury. J Plast Reconstr Aesthet Surg. 2012; 65(2): e37-41.
 
170.
Striebel JM, Pierre JM. Acute psychotic sequelae of „bath salts“. Schizophr Res. 2011; 133(1-3): 259-60.
 
171.
Penders TM, Gestring R. Hallucinatory delirium following use of MDPV: „Bath Salts“. Gen Hosp Psychiatry 2011; 33(5): 525-6.
 
172.
Antonowicz JL, Metzger AK, Ramanujam SL. Paranoid psychosis induced by consumption of methylenedioxypyrovalerone: two cases. Gen Hosp Psychiatry 2011; 33(6): 640 e5-6.
 
173.
Moad J, Kinasewitz G. Don‘t row the Baby out With the Bath.Salts. Chest . 2011; 140: 187A.
 
174.
Kriikku P, Wilhelm L, Schwarz O, Rintatalo J. New designer drug of abuse: 3,4-Methylenedioxypyrovalerone (MDPV). Findings from apprehended drivers in Finland. Forensic Sci Int. 2011; 210(1-3): 195-200.
 
175.
Fass JA, Fass AD, Garcia AS. Synthetic Cathinones (Bath Salts): Legal Status and Patterns of Abuse. Ann Pharmacother. 2012; 46: 436-441.
 
176.
Westphal F, Junge T, Rosner P, Fritschi G, Klein B, Girreser U. Mass spectral and NMR spectral data of two new designer drugs with an alpha-aminophenone structure: 4‘-methyl-alpha-pyrrolidinohexanophenone and 4‘-methyl-alpha-pyrrolidinobutyrophenone. Forensic Sci Int. 2007; 169(1): 32-42.
 
177.
Zuba D, Byrska B, Maciow M. Comparison of „herbal highs“ composition. Anal Bioanal Chem. 2011; 400(1): 119-26.
 
178.
Peters FT, Meyer MR, Theobald DS, Maurer HH. Identification of Cytochrome P450 Enzymes Involved in the Metabolism of the New Designer Drug 4’-Methyl-α-pyrrolidinobutyrophenone. Drug Metab Dispos. 2008; 36: 163-168.
 
179.
Staack RF, Maurer HH. Metabolism of designer drugs of abuse. Curr Drug Metab. 2005; 6(3): 259-74.
 
180.
Peters FT, Meyer MR, Fritschi G, Maurer HH. Studies on the metabolism and toxicological detection of the new designer drug 4‘-methyl-alpha-pyrrolidinobutyrophenone (MPBP) in rat urine using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 824(1-2): 81-91.
 
181.
Peters FT, Martinez-Ramirez JA. Analytical toxicology of emerging drugs of abuse. er Drug Monit. 2010; 32(5): 532-9.
 
182.
Maurer HH, Kraemer T, Springer D, Staack RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis. Ther Drug Monit. 2004; 26(2): 127-31.
 
183.
Springer D, Paul LD, Staack RF, Kraemer T, Maurer HH. Identification of cytochrome P450 enzymes involved in the metabolism of 4’methyl-pyrrolidinopropiophenone, a novel scheduled designer drug in human liver microsomes. Drug Metab Dispos. 2003;31: 979-982.
 
184.
Thevis M, Sigmund G, Thomas A, Gougoulidis V, Rodchenkov G, Schanzer W. Doping control analysis of metamfepramone and two major metabolites using liquid chromatography-tandem mass spectrometry. Eur J Mass Spectrom. 2009; 15(4): 507-15.
 
185.
Aerts LA, Mallaret M, Rigter H. N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB): its properties and possible risks. Addict Biol. 2000; 5(3): 269-82.
 
186.
WHO Expert Committee on Drug Dependence, thirty-second Report, Technical Report Series 903; 2001. http://whqlibdoc.who.int/trs/W... (access: 2012.02.19).
 
187.
Bossong MG, Van Dijk JP, Niesink RJ. Methylone and mCPP, two new drugs of abuse? Addict Biol. 2005; 10(4): 321-3.
 
188.
Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y. Analysis of designer drugs detected in the products purchased in fiscal year 2006. Yakugaku Zasshi 2008; 128(10): 1499-505.
 
189.
Bovens M, Schlapfer M. Designer Drugs /Research Chemicals/ Legal Highs–A survey of recent seizures and an attempt to a more effective handling from a Swiss perspective. Toxichem Krimtech. 2011; 78(Special issue): 167-175.
 
190.
Warrick BJ, Wilson J, Hedge M, Freeman S, Leonard K, Aaron C. Lethal serotonin syndrome after methylone and butylone ingestion. J Med Toxicol. 2012; 8(1): 65-8.
 
191.
Kovacs K, Toth AR, Kereszty EM. A new designer drug: methylone related death Orv Hetil. 2012; 153(7): 271-6.
 
192.
Shimizu E, H Watanabe H, Kojima T, Hagiwara H, Fujisaki M, Miyatake R, et al. Combined intoxication with methylone and 5-MeO-MIPT. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(1): 288-91.
 
193.
Nakagawa Y, Suzuki T, Tayama S, Ishii H, Ogata A. Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol. 2009; 83(1): 69-80.
 
194.
Cozzi NV, Sievert MK, Shulgin AT, Jacob 3 rd P, AE Ruoho AE. Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol. 1999; 381(1): 63-9.
 
195.
Sogawa C, Sogawa N, Ohyama K, Kikura-Hanajiri R, Goda Y, Kitayama S. Methylone and monoamine transporters: correlation with toxicity. Curr Neuropharmacol. 2011; 9(1): 58-62.
 
196.
Nagai F, Nonaka R, Satoh K, Kamimura H. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol. 2007; 559(2-3): 132-7.
 
197.
Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, et al. Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int. 2009; 188(1-3): 131-9.
 
198.
Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, et al. Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 2006; 36(8): 709-23.
 
199.
Bell C, George C, Kicman AT, Traynor A. Development of a rapid LC-MS/MS method for direct urinalysis of designer drugs. Drug Test Anal. 2011; 3(7-8): 496-504.
 
200.
Sorensen LK. Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2011; 879(11-12): 727-36.
 
201.
Doward J. Drug laws and bans on legal highs ‘do more harm than good’; 2011. http://www.guardian.co.uk/poli.... (access: 2012.01.17).
 
202.
Nutt DJ, King LA, Philips LD. Drug harms in the UK: a multicriteria decision analysis. Lancet 2010; 376(9752): 1558-1565.
 
203.
Davies S, Lee T, Ramsey J, Dargan PI, Wood DM. Risk of caffeine toxicity associated with the use of ‘legal highs’ (novel psychoactive substances). Eur J Clin Pharmacol. 2012; 68(4): 435-9.
 
204.
Hill SL, Thomas SH. Clinical toxicology of newer recreational drugs. Clin Toxicol. 2011; 49(8): 705-19.
 
205.
Ramsey J. Detecting and monitoring new psychoactive substances in wastewater. TICTAC Communications Ltd, St Georges University of London; 2011. http://www.tictac.org.uk/Intro... (access: 2012.01.08).
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top