CASE REPORT
 
KEYWORDS
TOPICS
ABSTRACT
Using deep learning and neural networks enables us to greatly speed-up quantitative studies and provide a useful tool for analyzing microscopic images. Studies conducted on selected algae Haematococcus and Coelastrum sp. confirm the feasibility of using the deep learning neural network. The confusion matrix demonstrated the numbers of errors generated by the YOLO v8 network in relation to the validation dataset. It indicated a higher number of errors in the detection of Haematococcus than Coleastrum. The F1 score, as the harmonic mean of precision and recall, is significantly higher for the class Coelastrum sp. than for Haematococcus sp. Machine learning can be applied not only to the detection of individual cells, but also to the detection of colonies over a wide range of sizes. This article discussed the technical and practical aspects of implementing these advanced methods and highlighted their importance in the aquaculture, food, medical, sustainable energy, and environmental sectors.
ACKNOWLEDGEMENTS
The research was carried out as part of the task commissioned under the title "Politechnical Network VIA CARPATIA named after the President of the Republic of Poland Lech Kaczyński" financed from the Special Purpose Grant of the Minister of Science, contract number MEiN/2022/DPI/2578 action "PO SĄSIEDZKU - inter-university research internships and study visits.
REFERENCES (25)
1.
Gamrat R, Puc M, Gałczyńska M, et al. Differences in the pollen content of varieties of Polish honey from urban and rural apiaries. Acta Univ Cibinien. Ser E: Food Technol. 2022;26(1):109–122. https://doi.org/10.2478/aucft-....
 
2.
Choi H-J, Lee S-M. Effects of microalgae on the removal of nutrients from wastewater: Various concentrations of Chlorella vulgaris. Environ Eng Res. 2012;17(S1):S3-S8. https://doi.org/10.4491/eer.20....
 
3.
Dębowski M, Zieliński M, Krzemieniewski M, et al. Możliwość namnażania biomasy glonów na bazie odcieku pochodzącego z odwadniania osadów pofermentacyjnych. Ann Set Environ Protect. 2013;15(2):1612–1623. ISSN 1506 218X1612-1622.
 
4.
Yang Y, Tang S, Chen JP. Carbon capture and utilization by algae with high concentration CO2 or bicarbonate as carbon source. Sci Total Environ. 2024;918:170325. https://doi.org/10.1016/j.scit....
 
5.
Iglina T, Iglin P, Pashchenko D. Industrial CO2 capture by algae: A review and recent advances. Sustainability. 2022;14:3801. https://doi.org/10.3390/su1407....
 
6.
Bhateria R, Dhaka R. Algae as biofuel. Biofuels. 2015;5(6):607–631. https://doi:10.1080/17597269.2....
 
7.
Neeti K, Gaurav K, Singh R. The potential of algae biofuel as a renewable and sustainable bioresource. Eng Proc. 2023;37(1):22. https://doi.org/10.3390/ECP202....
 
8.
Szczepocka E, Szulc B, Szulc K, et al. Diatom indices in the biological assessment of the water quality based on the example of a smalllowland river. Oceanol Hydrobiol Stud. 2014;43(3):265–273. https://doi.org/10.2478/s13545....
 
9.
Commission Implementing Regulation (EU) 2020/1820 of 2 December 2020 authorising the placing on the market of dried Euglena gracilis as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470.
 
10.
Le-Feuvre R, Moraga-Suazo P, Gonzalez J. Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. J Appl Phycol. 2020;32:3831–3852 https://doi.org/10.1007/s10811....
 
11.
Thiyagarasaiyar K, Goh BH, Jeon YJ, et al. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar Drugs. 2020;18:323. https://doi.org/10.3390/md1806....
 
12.
Pogorzelska E, Hamułka J, Wawrzyniak A. Astaksantyna – budowa, właściwości i możliwości zastosowania w żywności funkcjonalnej. Żywność. Nauka. Technologia. Jakość. 2016;1(104):5–16. http://dx.doi.org/10.15193/znt....
 
13.
Ota S, Kawano S. Three-dimensional ultrastructure and hyperspectral imaging of metabolite accumulation and dynamics in Haematococcus and Chlorella. Microscopy. 2019;68(1):57–68. https://doi.org/10.1093/jmicro....
 
14.
Taye MM. Understanding of Machine Learning with Deep Learning: architectures, workflow, applications and future directions. Computers. 2023;12:91. https://doi.org/10.3390/comput....
 
15.
Picińska-Fałtynowicz J, Błachuta J. Klucz do identyfikacji organizmów fitoplanktonowych z rzek i jezior dla celów badań monitoringowych części wód powierzchniowych w Polsce. Warszawa: Główny Inspektorat Ochrony Środowiska; 2012;83. ISBN 978-83-61227-05-2, OCLC 839100228.
 
16.
Adam C, Haryono A. Morphological study of Coelastrum cambricum from the Peat Water of Palangka Raya, Indonesia. Nusantara Sci Technol Proceed. 2022;25:21–28. https://doi.org/10.11594/nstp.....
 
17.
Rauytanapanit M, Jancho K, Kusolkumbot P, et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar Drugs. 2019;17:328. https://doi.org/10.3390/md1706....
 
18.
Staniszewski M, Dziadosz M, Zaburko J, et al. Automatic System for Acquisition and Analysis of Microscopic Digital Images containing activated sludge. Sci Technol Res J. 2024;18(7):51–61. https://doi.org/10.12913/22998....
 
19.
Dziadosz M, Majerek D, Łagód G. Microscopic studies of activated sludge supported by Automatic Image Analysis based on Deep Learning Neural Networks, J Ecol Eng. 2024;25(4):360–369. https://doi.org/10.12911/22998....
 
20.
Jamka K, Wróblewska-Łuczka P, Adamczuk P, et al. Methodology for preparing a cosmetic sample for the development of Microorganism Detection System (SDM) software and artificial intelligence learning to recognize specific microbial species. Ann Agric Environ Med. 2021;28(4):681–685. https://doi.org/10.26444/aaem/....
 
21.
Wu J, Xu W, He J, et al. YOLO for Penguin Detection and counting based on remote sensing images. Remote Sens. 2023;15:2598. https://doi.org/10.3390/rs1510....
 
22.
Codd GA, Morrison LF, Metcalf JS. Cyanobacterial toxins: Risk management for health protection. Toxicol Appl Pharmacol. 2005; 203(3):264–272. https://doi.org/10.1016/j.taap....
 
23.
Walo M, Majerek D, Kuzmina T, et al. Bioindication of surface water supported by automatic image analysis using Deep Learning Neural Network – Cyclotella Case Study. J Ecol Eng. 2024;25(12):366–375. https://doi.org/10.12911/22998....
 
24.
Yan H, Peng X, Chen Ch, et al. YOLOx model-based object detection for microalgal bioprocess. Algal Res. 2023;74:103178. https://doi.org/10.1016/j.alga....
 
25.
Oslan SNH, Shoparwe NF, Yusoff AH, et al. A Review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules. 2021;11(2):256. https://doi.org/10.3390/biom11....
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top