RESEARCH PAPER
Antimicrobial resistance of Escherichia coli and Klebsiella spp. conventionally sampled from factory-farmed chickens – clinical submissions
 
More details
Hide details
1
Lab of Veterinary Public Health Protection, Faculty of Veterinary Medicine and Animal Science, University of Life Science, Poznań, Poland
 
2
Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznań, Poland
 
3
Department of Biochemistry, Medical University of Silesia, School of Medicine in Katowice, Poland
 
4
Lab-Vet Laboratory, Tarnowo Podgórne, Poland
 
5
Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Science, Warsaw, Poland
 
 
Corresponding author
Michał Majewski   

Lab of Veterinary Public Health Protection, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences in Poznań, Słoneczna 1, 62-002, Złotniki, Poland
 
 
Ann Agric Environ Med. 2021;28(2):271-276
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The article discusses the antimicrobial resistance of poultry-isolated bacteria in the Wielkopolska region of Poland.

Material and methods:
From August 2014 – June 2016, antibiotic resistance screening tests were performed involving 4,496 samples of Escherichia coli and 84 samples of Klebsiella spp., and the following antibiotics: amoxicillin, amoxicillin with clavulanic acid, colistin, doxycycline, enrofloxacin, florfenicol, neomycin, norfloxacin, spectinomycin, and trimethoprim with sulfamethoxazole. The research used broth the microdilution method and CLSI standards.

Results:
During the investigation period of 22 months a growing percentage of E. coli isolates showed antibiotic resistance to amoxicillin, amoxicillin with clavulanic acid, colistin, enrofloxacin, neomycin, norfloxacin, spectinomycin, and trimethoprim with sulfamethoxazole. Resistance to doxycycline and florfenicol decreased. The most efficient antibiotics against E. coli were colistin (84.64 %), neomycin (80.62 %), and amoxicillin with clavulanic acid (73.05 %). Klebsiella samples were the most susceptible to neomycin (85.71 %), colistin (84.52 %), and trimethoprim with sulfamethoxazole (73.81 %).

Conclusions:
Antibiotic resistance of pathogenic micro-organisms, such as Escherichia coli and Klebsiella spp., is a serious problem both for poultry producers and for public health protection. Low efficiency of numerous antibiotic groups forces reflection on limiting the use of medicines in food-producing animals.
REFERENCES (32)
1.
Tauxe RV. Emerging foodborne pathogens. Int J Food Microbiol. 2002; 78: 31–41. https://doi:10.1016/s0168-1605....
 
2.
Hiltunen T, Virta M, Laine AL. Antibiotic resistance in the wild: an eco-evolutionary perspective. Phil Trans R Soc B. 2017; 372: 1–7. https://doi:10.1098/rstb.2016.....
 
3.
McNulty K, MeiSoon J, Wallace CA, Nastasijevic I. Antimicrobial resistance monitoring and surveillance in the meat chain: A report from five countries in the European Union and European Economic Area. Trends Food Sci Technol. 2016; 58(12): 1–13. https://doi:10.1016/j.tifs.201....
 
4.
Bogaard van den AE, London N, Driessen C, Stobberingh E. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 2001; 47(6): 763–771. https://doi:10.1093/jac/47.6.7....
 
5.
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. 2017; 28, 9(6): e1403. doi: 10.7759/cureus.1403. PMID: 28852600; PMCID: PMC5573035. https://doi:10.7759/cureus.140....
 
6.
ECDC/EFSA/EMEA. ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food producing animals. EFSA Journal. 2015; 13(1): 4006.
 
7.
Landman D, Georgescu C, Martin DA, Quale J. Polymyxins revisited. Clin Microbiol Rev 2008; 21(3),449–465. https://doi:10.1128/CMR.00006-....
 
8.
Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Sci. 2019; 98(4): 1791–1804. https://doi:10.3382/ps/pey539.
 
9.
Dybowski G. Foreign trade of poultry. Biuletyn informacyjny ARR. 2015; 2: 10–13.
 
10.
Gyles CL. Escherichia coli in Domestic Animals and Humans. CAB International, Wallingford 1994; 237–259.
 
11.
Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res. 1999; 30(2–3): 299–316.
 
12.
Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R, Diancourt L, Grimont P. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. 2009; 4(3): 4982. https://doi:10.1371/journal.po....
 
13.
Cabral AB, Melo A, Maciel MAV, Lopes ACS. Multidrug resistance genes, including blaKPC and blaCTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop. 2012; 45(5): 572–578. https://doi:10.1590/s0037-8682....
 
14.
Aly MM, Khalil S, Metwaly A. Isolation and molecular identification of Klebsiella microbe isolated from chicks. Alex J Vet Sci. 2014; 43: 97–103. https://doi:10.5455/ajvs.16720....
 
15.
Khelfa DG, Morsy EA. Incidence and distribution of some aerobic bacterial agents associated with high chick mortality in some broiler flocks in Egypt. Middle East J Appl Sci. 2015; 5: 383–94.
 
16.
Egervarn M, Börjesson S, Byfors S, Finn M, Kaipe C, Englund S, Lindblad M. Escherichia coli with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden. Int J Food Microbiol. 2014; 171: 8–14. https://doi:10.1016/j.ijfoodmi....
 
17.
Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect. 2011; 17(6): 873–80. https://doi:10.1111/j.1469-069....
 
18.
Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans. The Netherlands. Emerg Infect Dis. 2011; 17(7): 1216–1222. https://doi:10.3201/eid1707.11....
 
19.
Wasyl D, Hoszowski A, Zając M, Szulowski K. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front Microbiol. 2013; 5(4): 221. https://doi:10.3389/fmicb.2013....
 
20.
Clinical and Laboratory Standards Institute. Methods for dilution of antimicrobial susceptibility tests for bacteria that grow aerobically. Ninth edition. 2012.
 
21.
EFSA (European Food Safety Authority): The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2014. EFSA J. 2016; 14(2): 4380.
 
22.
Amer MM, Mekky HM, Amer AM, Fedawy HS. Antimicrobial resistance genes in pathogenic Escherichia coli isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics. Vet World. 2018; 11(8): 1082–1088. https://doi:10.14202/vetworld.....
 
23.
Hussain A, Shaik S, Ranjan A, Nandanwar N, Tiwari SK, Majid M, et al. Risk of Transmission of Antimicrobial Resistant Escherichia coli from Commercial Broiler and Free-Range Retail Chicken in India. Front Microbiol. 2017; 8: 2120. https://doi: 10.3389/fmicb.2017.02120.
 
24.
Davis GS, Waits K, Nordstrom L, Grande H, Weaver B, Papp K, et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol. 2018; 18(1): 174. https://doi:10.1186/s12866-018....
 
25.
Subedi M, Luitel H, Devkota B, Bhattarai RK, Phuyal S, Panthi P, et al. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet Res. 2018; 14: 113. https://doi.org/10.1186/s12917....
 
26.
Zhao S, Maurer JJ, Hubert S, De Villena JF, McDermott PF, Meng J, et al. Antimicrobial susceptibility and molecular characterization of avian pathogenic Escherichia coli isolates. Vet Microbiol. 2005; 107: 215–224. https://doi.org/10.1016/j.vetm....
 
27.
Ibrahim RA, Cryer TL, Lafi SQ, Basha E-A, Good L, Tarazi YH. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet Res. 2019; 15: 159. https://doi: 10.1186/s12917-019-1901-1.
 
28.
Wu H, Wang M, Liu Y, Wang X, Wang Y, Lu J, Xu H. Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int J Food Microbiol. 2016; 232(10), 95–102. https://doi:10.1016/j.ijfoodmi....
 
29.
Azam M. Mohsin M. Sajjad-ur-Rahman S. Muhammad Kashif S. Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan. Trop Anim Health Prod. 2019; 51: 1259. https://doi.org/10.1007/s11250....
 
30.
Wang J, Zhao G, Gao Y, Xu H, Mohamed L, Zhao J, et al. Virulence and Antimicrobial Characteristics of Escherichia Coli Isolated from Diseased Chickens in China and Algeria. J Adv Agric Technol. 2019; 10: 1821–1833. https://doi.org/10.24297/jaa.v....
 
31.
Krasucka D, Cybulski W, Klimowicz A. Evaluation of antimicrobial agents consumption in swine and cattle in Poland based on a questionnaire in 2010. Med Wet. 2012; 68(2), 106–109.
 
32.
Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, et al. Broad-spectrum β-lactamases among Enterobacteriaceae of Animals origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev. 2010; 34(3): 295–316. https://doi:10.1111/j.1574-697....
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top