RESEARCH PAPER
Anthropometric, body composition and behavioural predictors of bioelectrical impedance phase angle in Polish young adults – preliminary results
 
More details
Hide details
1
Department of Clinical Dietetics, Faculty of Health Sciences, Medical University, Lublin, Poland
 
2
Department of Medical Informatics and Statistics with E-learning Laboratory, Faculty of Health Sciences, Medical University, Lublin, Poland
 
3
Institute of Rural Health, Lublin, Poland
 
 
Corresponding author
Michał Skrzypek   

Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Lublin, ul. Chodźki 1, room 161, 20-093, Lublin, Poland
 
 
Ann Agric Environ Med. 2020;27(1):91-98
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Bioimpedance analysis (BIA) phase angle (PhA) is an index of the integrity of cells and cellular membranes. The aim of the study was identification of behavioural and anthropometric predictors of PhA in a group of young adults.

Material and methods:
A cross-sectional observational study of health behaviours, anthropometric indicators and body composition assessed by the BIA method was conducted in a group of Polish young adults (n=92) aged 18 – 24 (mean – 19.33, STD – 0.915). Behavioural variables included: level of physical activity, eating behaviours and nutritional knowledge. Body composition was analysed by means of BIA phase-sensitive 8-electrode medical SECA mBCA 525 device.

Results:
The mean PhA value in the examined cohort was 6.38±0.75 (males – 7.22±0.72; females – 6.13±0.57). Males also showed higher statistically significant other body composition indices, excluding fat mass. The multiple regression model, including anthropometric variables and gender, which explained the effect of these variables on PhA, occurred to be significant (p<0.0000) and allowed explanation of the 82.49% of PhA variability. PhA was significantly predicted from body mass index (BMI), absolute fat mass, visceral adipose tissue value, skeletal muscle mass value and gender. The regression model, including behavioural predictors and gender, allowed explanation of the lower percentage of PhA variability (42.75%; p<0.0000) and included general intensity of health behaviours, level of nutritional knowledge, and gender. A regression model which would consider simultaneously anthropometric and behavioural variables could not be constructed.

Conclusions:
In the examined cohort, anthropometric and body composition variables showed a stronger predictive value with respect to PhA, compared to behavioural variables.
ABBREVIATIONS
(in the order in which they appear in the text): BIA – bioelectrical impedance analysis; Z – impedance; R – resistance; Xc – reactance; PhA – phase angle; BIVA – bioelectrical impedance vector analysis; ECW – extracellular body water; TBW – total body water; FFM – fat free mass; FM – fat mass; BCM – body cell mass; ECM – extracellular matrix; PA – physical activity; BMI – body mass index; SMM – skeletal muscle mass; IPAQ – International Physical Activity Questionnaire; MET – metabolic equivalent; KomPAN – questionnaire for investigating nutritional attitudes and habits; pHDI-10 – pro-Healthy Diet Index-10; nHDI-14 non-Healthy Diet Index-14; HBI – Healthy Behaviour Inventory; VAT – visceral adipose tissue; ICW – intercellular body water; FFQ – food frequency questionnaire
REFERENCES (38)
1.
Mialich SM, Faccioli Sicchieri JM, Jordao AA. Analysis of body composition: critical review of the use of bioelectrical impedance analysis. IJCN. 2014; 2(1): 1–10. DOI: 10.12691/ijcn-2-1-1.
 
2.
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis- part I: review of principles and methods. Clin Nutr. 2004; 23(5): 1226–1243. DOI: 10.1016/j.clnu.2004.06.004.
 
3.
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis- part II: utilization in clinical practice. Clin Nutr. 2004; 23(6): 1430–1453. DOI: 10.1016/j.clnu.2004.09.012.
 
4.
Wit B, Buśko K, Mróz A, Kłossowski M. The using of bioelectric impedance (BIA) and near-infrared spectrophotometric (FUTREX) determinations of body composition in males of variable physical activity- a comparative analysis. Biol Sport. 2001; 18(4): 321–334.
 
5.
Barbosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005; 82(1): 49–52. DOI: 10.1093/ajcn.82.1.49.
 
6.
Gonzalez MC, Barbosa-Silva TG, Bielemann RM, Gallagher D. Heymsfield SB. Phase angle and its determinants in healthy subjects: influence of body composition. Am J Clin Nutr. 2016; 103(3): 712–716. DOI: 10.3945/ajcn.115.116772.
 
7.
Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol. 2002; 86(6): 509–516. DOI: 10.1007/s00421-001-0570-4.
 
8.
Lewitt A. Mądro E. Krupienicz A. [Theoretical essentials of application of bioelectrical impedance]. Endokrynol Otył Zab Przem Mat. 2007; 3(4): 79–84. [In Polish].
 
9.
Norman K, Stobaus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis- clinical relevance and applicability of impedance parameters. Clin Nutr. 2012; 31(6): 854–861. DOI: 10.1016/j.clnu.2012.05.008.
 
10.
Bosy-Westphal A, Danielzik S, Dörhöfer RP, Later W, Wiese S, Müller MJ. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. J Parenter Enteral Nutr. 2006; 30(4): 309–316. DOI: 10.1177/0148607106030004309.
 
11.
Ward LC, Muller MJ. Bioelectrical impedance analysis. Eur J Clin Nutr. 2013; 67(Suppl 1): S1. DOI: 10.1038/ejcn.2012.148.
 
12.
Małecka-Massalska T, Popiołek J, Teter M, Homa-Mlak I, Dec M, Makarewicz A, et al. Application of phase angle for evaluation of the nutrition status of patients with anorexia nervosa. Psychiatr Pol. 2017; 51(6): 1121–1131. DOI: 10.12740/PP/67500.
 
13.
Mundstock E, Amaral MA, Baptista RR, Sarria EE, Dos Santos RRG, Filho AD et al. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clin Nutr. 2019; 38(4): 1504–1510. DOI: 10.1016/j.clnu.2018.08.031.
 
14.
Walter-Kroker A, Kroker A, Mattiucci-Guehlke M, Glaab T. A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutr J. 2011; (10)35: 1–8. DOI: 10.1186/1475-2891-10-35.
 
15.
De Oliveira PG, Pereira dos Santos AS, de Mello ED. Bioelectrical impedance phase angle: utility in clinical practice. IJN. 2012; 5(3): 123–127.
 
16.
Grundmann O, Yoon SL, Williams JJ. The value of bioelectrical impedance analysis and phase angle in the evaluation of malnutrition and quality of life in cancer patients- a comprehensive review. Eur J Clin Nutr. 2015; 69: 1290–1297. DOI: 10.1038/ejcn.2015.126.
 
17.
Llames L, Baldomero V, Iglesias ML, Rodota LP. Values of the phase angle by bioelectrical impedance: nutritional status and prognostic valve. Nutr Hosp. 2013; 28(2): 286–295. DOI: 10.3305/nh.2013.28.2.6306.
 
18.
Genton L, Herrmann FR, Spörri A, Graf CE. Association of mortality and phase angle measured by different bioelectrical impedance analysis (BIA) devices. Clin Nutr. 2018; 37(3): 1066–1069. DOI: 10.1016/j.clnu.2017.03.023.
 
19.
Wilhelm-Leen ER, Hall YN, Horwitz RI. Phase angle, frailty and mortality in older adults. J Gen Intern Med. 2014; 29(1): 147–154.
 
20.
The WHO STEPwise approach to noncommunicable disease risk factor surveillance. World Health Organization 2017. https://www.who.int/ncds/surve... (access: 2020.02.03).
 
21.
Bosy-Westphal A, Jensen B, Braun W, Pourhassan M, Gallagher D, Müller MJ. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr. 2017; 71(9): 1061–1067. DOI: 10.1038/ejcn.2017.27.
 
22.
Biernat E. [The International Physical Activity Questionnaires (IPAQ) – Polish version]. Med Sport. 2013; 1(4): 1–15. [In Polish].
 
23.
Gawęcki J, ed. [Questionnaire for investigation of nutritional attitudes and habits and data analysis procedure. Team for behavioural conditioning of nutrition Committee of Nutritional Science, Polish Academy of Sciences]. http://www.knozc.pan.pl/index…. (access: 2019.10.18). [In Polish].
 
24.
Juczyński Z. [Measurement instruments in health psychology]. Prz Psychol. 1999; 42(4): 43–56. [In Polish].
 
25.
Kreutz I, Kreutz K. [Introduction to single and multivariate regression analysis] In: Bedyńska WS, Brzezicka A, editors. [Statistical signpost]. Warszawa: SWPA; 2007. [In Polish].
 
26.
Kumar S, Dutt A, Hemraj S, Bhat S, Manipadybhima B. Phase angle measurement in healthy human subjects through bio-impedance analysis. Iran J Basic Med Sci. 2012; 15(6): 1180–1184.
 
27.
Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr. 1988; 48(1): 16–23. DOI: 10.1093/ajcn/48.1.16.
 
28.
Rodriguez-Rodriguez F, Cristi-Montero C, Gonzalez-Ruiz K, Correa-Bautista JE, Ramírez-Vélez R. Bioelectrical impedance vector analysis and muscular fitness in healthy men. Nutritiens. 2016; 8(7): 407. DOI: 10.3390/nu8070407.
 
29.
Wu TJ. Relationships between age, sex, anthropometry and bioelectrical impedance. J Formos Med Assoc. 1992; 91(12): 1143–1147.
 
30.
Mattiello R, Amaral MA, Mundstock E, Ziegelmann PK. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin Nutr. 2019; (19)30: 286–289. DOI: 10.1016/j.clnu.2019.07.004.
 
31.
Barrea L, Muscogiuri G, Macchia PE, Di Somma C, Falco A, Cristina M, et al. Mediterranean diet and phase angle in a sample of adult population: results of a pilot study. Nutrients. 2015; 9(2): 1–14. DOI: 10.3390/nu9020151.
 
32.
Koseoglu SZA, Dogrusoy M. Evaluation of phase angle measurements and nutrient consumption by bioelectrical impedance method of 20–65 years old women. Prog Nutr. 2020; 33(3): 1–9. DOI: 10.23751/pn.v22i3.8523.
 
33.
Kristal AR, Satia JA. Evaluation of nutrition interventions. In: Boushey CJ, Coulston AM, Rock CL, Monsen E, editors. Nutrition in the prevention and treatment of disease. Elsevier; 2001. p.123–138.
 
34.
Brown D. Do food frequency questionnaires have too many limitations? J Am Diet Assoc. 2006; 106(10): 1541–1542. DOI: 10.1016/j.jada.2006.07.020.
 
35.
Molag ML, de Vries JHM, Ocké MC, Dagnelie PC, van den Brandt PA, Jansen MCJF, et al. Design characteristics of food frequency questionnaires in relation to their validity. Am J Epidemiol. 2007; 166(12): 1468–1478. DOI: 10.1093/aje/kwm236.
 
36.
Sławecki K. [Physical activity of males assessed using international physical activity questionnaire IPAQ – long version]. Antropomotoryka. 2012; (59): 57–66. [In Polish].
 
37.
Górski M, Piątkowska M, Pastuszak A, Michalak B. Level of physical activity of physical education students in Poland and Ireland. J Educ Health Sport. 2017; 7(3): 221–230. DOI: 10.5281/zenodo.268998.
 
38.
Pastuszak A, Lisowski K, Lewandowska J, Buśko K. Level of physical activity of physical education students according to criteria of the IPAQ questionnaire and the recommendation of WHO experts. Biomed Hum Kinetics. 2014; 6: 5–11. DOI: 10.2478/bhk-2014-0002.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top