First report of two asymptomatic cases of human infection with *Babesia microti* (Franca, 1910) in Poland

Renata Welc-Falęciak, Agnieszka Pawełczyk, Marek Radkowski, Sławomir A Pancewicz, Joanna Zajkowska, Edward Siński

INTRODUCTION

Human babesiosis is an emerging zoonotic tick-borne disease (TBD), caused by intraerythrocytic protozoa of the genus *Babesia* within the Piroplasmoridae [1]. It is found on all inhabited continents, with an increasing number of cases recognized every year. In some regions of the northern hemisphere, the incidence of human infections with *Babesia* parasites has increased dramatically in the last decade, from 4–20-fold [2]. Most reported cases in Europe have been attributed to *B. divergens*, and the first recorded case of infection with this species occurred in a splenectomized farmer in Croatia [3]. However, a few were caused by *B. venatorum* and *B. microti* [4].

The primary vectors of the majority of zoonotic species of *Babesia* are hard exophilic ticks of the *Ixodes ricinus-persulcatus* ‘complex’ [5, 6]. A few blood transmission acquired cases of babesiosis, often caused by *B. microti*, have been reported in the USA [7]. Another route of *Babesia* transmission, which occurs sporadically, is vertical infection from mother to infant [8]. In Europe, however, *B. microti* is primarily transmitted by nymphs and adults of the tick *I. ricinus*.

Babesiosis is frequently asymptomatic in healthy immunocompetent people, but severe and often fatal cases may occur in immunodeficient individuals, especially in asplenic subjects, those of advanced age (> 50 years old), and other patients with compromised immunity [4, 9]. The clinical manifestation of babesiosis can range from subclinical infection to fulminate disease, often resulting in death [2]. Most symptomatic patients become ill 1–4 weeks after the bite of a *Babesia*-infected tick, or 1–9 weeks after transfusion of contaminated blood products [10]. Asymptomatic infection with low parasitemia may persist for several months or for more than a year if the infected person does not receive therapy [4]. There is a direct correlation between the immunological status of the infected person and the severity of illness they experience following babesial infection. However, clinical cases are rare, and the risk of severe babesiosis is rather low compared with other TBDs. The main symptom of babesiosis is fever, with a peak temperature of over 40 °C, which may be accompanied by chills, sweats, fatigue, headache and myalgia.

Despite the implementation of molecular analysis to study the phylogeny of *Babesia* parasites, the classification of *B. microti* parasites, which form a species ‘complex’ within the Piroplasmoridae with *B. microti* [11] as a type species, is still controversial [12, 13].

The purpose of the presented study is to investigate the prevalence and risk of *B. microti* infections in healthy professional forester workers working in the forest ecosystem in eastern Poland, where TBDs are endemic.

MATERIALS AND METHOD

Human sample collection and DNA isolation. A total of 58 immunocompetent individuals (41 male, 17 female, mean age 46.4, age range 20–59) were examined in early summer (June) 2011. The study participants were randomly selected forestry workers, employed in the Podlaskie province of eastern Poland. Demographic and epidemiological data were...
collected using a questionnaire, and blood samples taken into 1 mM EDTA for molecular analyses. Genomic DNA was extracted from whole blood using DNAeasy Blood and Tissue Kit (Qiagen, Crawley, UK) and stored at -20°C prior to analysis.

Polymerase chain reaction (PCR) analysis. Detection and genotyping of Babesia isolates were performed by PCR amplification and sequencing of a fragment of the 18S rRNA gene. The primers and cycling conditions used in this study have been described previously [14]. Reactions were performed in a final volume of 20 uL containing 1 uM of each primer, 1× PCR buffer, 2 mM MgCl₂, 0.33 mM dNTPs (Eurobio, Lille, France), 1 U Taq DNA polymerase, and 5 µL of the DNA extracted from blood samples. DNA of the Theileria sergenti, B. canis, B. ovis and B. microti King’s College strain isolated from BALB/c mouse blood were used as a positive control. Template DNA was omitted from the negative control. PCR amplicons were analyzed by electrophoresis in 2% agarose gels and visualized using Midori Green stain (Nippon Genetics Europe GmbH). These DNA fragments were purified using an Axygene Clean-up purification kit (Axygen, USA) and sequenced in both directions (Genomed S.A., Poland).

Real-Time PCR (RT PCR) analysis. Quantitative real-time PCR was used to detect the genetic material of B. microti in the DNA extracted from whole-blood specimens, employing the same primers as previously. Reactions were performed in a final volume of 20 uL and contained 0.5 uM of each primer, 2 µL of Fast Start DNA Master SYBR Green I (Roche Diagnostic, Mannheim, Germany), 2 mM MgCl₂, and 2 µL of template DNA. The amplification was performed using a LightCycler (Roche Molecular Biochemicals, Mannheim, Germany). Thirty cycles: 30 s denaturation at 95°C, 5 s annealing at 60°C, and 30 s extension at 72°C were employed. The specificity of the signal was confirmed by melting curve analysis in relation to positive control samples.

Phylogenetic analysis. DNA sequence alignments and phylogenetic analysis were conducted using MEGA version 5.0 [15]. Phylogenetic trees were created using alignments performed with the Kimura-2 parameter algorithm as a distance method and NJ as the tree construction method. For comparison, sequences of Babesia, Theileria and Cytauxzoon obtained from GenBank (www.ncbi.nlm.nih.gov) were included in the sequence alignment. The stability of the inferred phylogenies was assessed by bootstrap analysis of 1,000 randomly generated sample trees.

Nucleotide sequence accession number. The partial sequence of the 18S ribosomal RNA gene of a new Babesia microti isolate (H295) was deposited in GenBank (Accession No. KC470047).

RESULTS

Among the 58 foresters examined, in two cases (3.4%) an asymptomatic infection with B. microti was detected. These two healthy immunocompetent individuals, both over 45 years old, had been bitten several times by I. ricinus ticks while working in the forest ecosystem during the last two years. Parasites in their blood were positively identified as B. microti by PCR, RT-PCR and sequencing of the amplified 18S rRNA gene fragment.

A 560-bp fragment of 18S rRNA gene fragment was amplified by PCR using DNA isolated from the blood of the infected individuals (Fig. 1). Phylogenetic analysis showed 100% homology of the obtained sequence with the 18S rRNA gene of B. microti jena/Germany (EF413181), a zoonotic strain infectious to humans (Fig. 2). The specificity and sensitivity of Babesia detection in the two identified cases were additionally confirmed by RT PCR and melting curve analysis of the amplified products (Fig. 3).
In the last decade of the 20th century, new tick-borne diseases (TBDs) emerged as threats to public health in Europe. These TBDs are mostly due to infections with *Borrelia burgdorferi* s.l., *Anaplasmaphagocytophilum*, tick-borne encephalitis virus (TBEV) and *Babesia* spp: pathogens primarily transmitted by *I. ricinus-persulcatus* 'complex' ticks. Human babesiosis in Europe is mostly caused by *B. divergens*, but some have been caused by *B. venatorum* and *B. microti*. To date, approximately 40 cases have been reported, mainly in France, Ireland and the UK, with a few cases described in Sweden, Switzerland, Spain, Portugal and Croatia [6, 16, 17, 18]. To-date, only three cases of *B. microti* infection in humans have been reported in Europe [19, 20, 21], one of which remains controversial [22]. Infection with *B. venatorum*, formally designated *Babesia* sp. (EU1), in Europe, was first described in two asplenic patients from Italy and Austria [23], and two further cases have since been documented, one in a splenectomized and immunosuppressed (Rituximab) patient from Germany [24], and the other in a person from Poland who was co-infected with *Borrelia burgdorferi* [25].

The presented study, based on molecular analysis, is the first to describe asymptomatic *B. microti* infection without any subclinical symptoms in immunologically competent persons in Poland. Moreover, no subclinical or clinically confirmed cases of *Babesia* infection reported in Poland have previously been verified by molecular assays. This study demonstrates that the quantitative RT PCR assay is highly effective as a diagnostic tool for the detection of *B. microti* infection in whole blood.

Phylogenetic examination of the two isolates of *Babesia* identified in the present study, based on a *Babesia* 18S rRNA gene sequence, revealed their close relationship with *B. microti* Jena/Germany, a zoonotic strain pathogenic for humans. Both are grouped as sister clades within the piroplasms represented by *Theileria annae* and the other *Babesia* spp. of carnivores, referred to by Criado-Fornelio et al. [26] as Archaeopiroplasms. Recently, the first genome-wide phylogenetic analysis of *B. microti* indicated that this species is significantly distinct from species of either the *Babesia* or *Theileria* genus, and suggested that it should be classified as a new clade in the phylum Apicomplexa [12].

Generally in Europe, there is a dearth of molecular data to confirm human cases of babesiosis, and the real prevalence in humans is probably underestimated because of subclinical infection or co-infection with other TBD pathogens, such as *Borrelia burgdorferi* s.l. or *Anaplasmaphagocytophilum*. Field surveys in the north-east of Poland have shown that between 12–23% of wild rodents in forest ecosystems are infected with *B. microti* [27, 28]. In these ecosystems, the prevalence of infection in the abundant nymphs and adults of *I. ricinus* ticks was over 1%. It is noteworthy that a zoonotic genotype of *B. microti* (Jena strain) was recently identified in *Babesia*-infected ticks from this region [29].

The findings of the presented study confirm the existence of natural foci of human babesiosis. Foresters as a group are occupationally exposed to zoonotic *B. microti* parasites in the Polish forest ecosystem, and thus are at potential risk of infection.

Acknowledgements

The research forms part of Project No. NN 404 795240, supported by the Polish Ministry of Science and Higher Education in Warsaw.

REFERENCES